inceptionresnetv1
copied
6 changed files with 161 additions and 1 deletions
Binary file not shown.
@ -1,2 +1,68 @@ |
|||||
# inceptionresnetv1 |
|
||||
|
# Inception-ResNet v1 Face Embedding Operator |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Desription |
||||
|
|
||||
|
This operator extracts embedding vector from facial image using [Inception-ResNet](https://arxiv.org/pdf/1602.07261.pdf). The implementation is an adaptation from [timesler/facenet-pytorch](https://github.com/timesler/facenet-pytorch). |
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Extract face image embedding from './img.png'. |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./img.png') \ |
||||
|
.image_decode.cv2() \ |
||||
|
.face_embedding.inceptionresnetv1() \ |
||||
|
.tolist() |
||||
|
``` |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./img.png') \ |
||||
|
.image_decode.cv2['path', 'img']() \ |
||||
|
.face_embedding.inceptionresnetv1['img', 'vec']() \ |
||||
|
.select('img','vec') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/face-embedding/inceptionresnetv1/raw/branch/main/result.png" alt="result" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***face_embedding.inceptionresnetv1(image_size = 160)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***image_size***: *int* |
||||
|
|
||||
|
Scaled input image size to extract embedding. The higher resolution would generate the more discriminateive feature but cost more time to calculate. |
||||
|
|
||||
|
supported types: `int`, default is 160. |
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
A face embedding operator takes a face image as input. It extracts the embedding back to ndarray. |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***img***: *towhee.types.Image (a sub-class of numpy.ndarray)* |
||||
|
|
||||
|
The input image. |
||||
|
|
||||
|
**Returns**: *numpy.ndarray* |
||||
|
|
||||
|
The extracted image embedding. |
||||
|
|
||||
|
@ -0,0 +1,26 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
# import os |
||||
|
|
||||
|
# # For requirements. |
||||
|
# try: |
||||
|
# import efficientnet_pytorch |
||||
|
# except ModuleNotFoundError: |
||||
|
# os.system('pip install efficientnet_pytorch') |
||||
|
from .inceptionresnetv1 import Inceptionresnetv1 |
||||
|
|
||||
|
def inceptionresnetv1(image_size = 160 ): |
||||
|
return Inceptionresnetv1(image_size) |
||||
|
|
@ -0,0 +1,63 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
from typing import NamedTuple |
||||
|
|
||||
|
import numpy as np |
||||
|
import torch |
||||
|
import cv2 |
||||
|
from facenet_pytorch import InceptionResnetV1 |
||||
|
|
||||
|
from towhee import register |
||||
|
from towhee.operator import NNOperator |
||||
|
from towhee.types.image_utils import to_pil |
||||
|
from towhee._types import Image |
||||
|
from towhee.types import arg, to_image_color |
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class Inceptionresnetv1(NNOperator): |
||||
|
""" |
||||
|
comment placeholder |
||||
|
""" |
||||
|
def __init__(self, image_size = 160): |
||||
|
self.image_size = image_size |
||||
|
self._model = InceptionResnetV1(pretrained='vggface2') |
||||
|
self._model.eval() |
||||
|
|
||||
|
@arg(1, to_image_color('RGB') ) |
||||
|
def __call__(self, img: Image) -> np.ndarray: |
||||
|
img = self.preprocess(img) |
||||
|
embs = self._model(torch.FloatTensor(img).permute(0,3,1,2)).detach().numpy() |
||||
|
return embs |
||||
|
|
||||
|
def preprocess(self, img: Image): |
||||
|
#img shape expected to be [n, h, w, c=3] or [h, w, c=3]. |
||||
|
if len(img.shape) == 3: |
||||
|
img = cv2.resize(img, (self.image_size, self.image_size)) |
||||
|
img = np.expand_dims(img, 0) |
||||
|
elif len(img.shape) == 4: |
||||
|
pass |
||||
|
else: |
||||
|
raise ValueError('unknown tensor shape, need to be [n, h, w, c=3] or [h, w, c=3].') |
||||
|
img = self._fixed_image_standardization(img) |
||||
|
return img |
||||
|
|
||||
|
def _fixed_image_standardization(self, image_tensor): |
||||
|
processed_tensor = (image_tensor - 127.5) / 128.0 |
||||
|
return processed_tensor |
||||
|
|
||||
|
def train(self): |
||||
|
""" |
||||
|
For training model |
||||
|
""" |
||||
|
pass |
@ -0,0 +1,5 @@ |
|||||
|
opencv-python>=4.1.2 |
||||
|
torch>=1.7.0 |
||||
|
torchvision>=0.8.1 |
||||
|
numpy |
||||
|
facenet-pytorch>=2.5.2 |
After Width: | Height: | Size: 110 KiB |
Loading…
Reference in new issue