# Inception-ResNet v1 Face Embedding Operator *author: David Wang*
## Description This operator extracts embedding vector from facial image using [Inception-ResNet](https://arxiv.org/pdf/1602.07261.pdf). The implementation is an adaptation from [timesler/facenet-pytorch](https://github.com/timesler/facenet-pytorch).
## Code Example Extract face image embedding from './img.png'. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./img.png') \ .image_decode.cv2() \ .face_embedding.inceptionresnetv1() \ .to_list() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./img.png') \ .image_decode.cv2['path', 'img']() \ .face_embedding.inceptionresnetv1['img', 'vec']() \ .select['img','vec']() \ .show() ``` result
## Factory Constructor Create the operator via the following factory method: ***face_embedding.inceptionresnetv1(image_size = 160)*** **Parameters:** ***image_size:*** *int* Scaled input image size to extract embedding. The higher resolution would generate the more discriminative feature but cost more time to calculate. supported types: `int`, default is 160.
## Interface A face embedding operator takes a face image as input. It extracts the embedding in ndarray. **Parameters:** ​ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The input image. **Returns:** *numpy.ndarray* ​ The extracted image embedding.