# Inception-ResNet v1 Face Embedding Operator *author: David Wang*
## Description This operator extracts embedding vector from facial image using [Inception-ResNet](https://arxiv.org/pdf/1602.07261.pdf). The implementation is an adaptation from [timesler/facenet-pytorch](https://github.com/timesler/facenet-pytorch).
## Code Example Extract face image embedding from './img.png'. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('path') .map('path', 'img', ops.image_decode()) .map('img', 'vec', ops.face_embedding.inceptionresnetv1()) .output('img', 'vec') ) DataCollection(p('img.png')).show() ``` result
## Factory Constructor Create the operator via the following factory method: ***face_embedding.inceptionresnetv1(image_size = 160)*** **Parameters:** ***image_size:*** *int* Scaled input image size to extract embedding. The higher resolution would generate the more discriminative feature but cost more time to calculate. supported types: `int`, default is 160.
## Interface A face embedding operator takes a face image as input. It extracts the embedding in ndarray. **Parameters:** ​ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The input image. **Returns:** *numpy.ndarray* ​ The extracted image embedding.