# Inception-ResNet v1 Face Embedding Operator *author: David Wang* <br /> ## Description This operator extracts embedding vector from facial image using [Inception-ResNet](https://arxiv.org/pdf/1602.07261.pdf). The implementation is an adaptation from [timesler/facenet-pytorch](https://github.com/timesler/facenet-pytorch). <br /> ## Code Example Extract face image embedding from './img.png'. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./img.png') \ .image_decode.cv2() \ .face_embedding.inceptionresnetv1() \ .tolist() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./img.png') \ .image_decode.cv2['path', 'img']() \ .face_embedding.inceptionresnetv1['img', 'vec']() \ .select['img','vec']() \ .show() ``` <img src="https://towhee.io/face-embedding/inceptionresnetv1/raw/branch/main/result.png" alt="result" style="height:60px;"/> <br /> ## Factory Constructor Create the operator via the following factory method: ***face_embedding.inceptionresnetv1(image_size = 160)*** **Parameters:** ***image_size:*** *int* Scaled input image size to extract embedding. The higher resolution would generate the more discriminative feature but cost more time to calculate. supported types: `int`, default is 160. <br /> ## Interface A face embedding operator takes a face image as input. It extracts the embedding in ndarray. **Parameters:** ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* The input image. **Returns:** *numpy.ndarray* The extracted image embedding.