logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

63 lines
2.1 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
import numpy as np
import torch
import cv2
from facenet_pytorch import InceptionResnetV1
from towhee import register
from towhee.operator import NNOperator
from towhee.types.image_utils import to_pil
from towhee._types import Image
from towhee.types import arg, to_image_color
@register(output_schema=['vec'])
class Inceptionresnetv1(NNOperator):
"""
comment placeholder
"""
def __init__(self, image_size = 160):
self.image_size = image_size
self._model = InceptionResnetV1(pretrained='vggface2')
self._model.eval()
@arg(1, to_image_color('RGB') )
def __call__(self, img: Image) -> np.ndarray:
img = self.preprocess(img)
embs = self._model(torch.FloatTensor(img).permute(0,3,1,2)).detach().numpy()
return embs
def preprocess(self, img: Image):
#img shape expected to be [n, h, w, c=3] or [h, w, c=3].
if len(img.shape) == 3:
img = cv2.resize(img, (self.image_size, self.image_size))
img = np.expand_dims(img, 0)
elif len(img.shape) == 4:
pass
else:
raise ValueError('unknown tensor shape, need to be [n, h, w, c=3] or [h, w, c=3].')
img = self._fixed_image_standardization(img)
return img
def _fixed_image_standardization(self, image_tensor):
processed_tensor = (image_tensor - 127.5) / 128.0
return processed_tensor
def train(self):
"""
For training model
"""
pass