diff --git a/README.md b/README.md
index 2946c71..e86a56a 100644
--- a/README.md
+++ b/README.md
@@ -1,17 +1,25 @@
# MobileFaceNet Face Landmark Detecter
-*authors: David Wang*
+*author: David Wang*
-## Desription
+
+
+
+
+## Description
[MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark).
+
+
+
+
## Code Example
Extract facial landmarks from './img1.jpg'.
-*Write the pipeline in simplified style*:
+*Write the pipeline in simplified style:*
```python
import towhee
@@ -31,12 +39,17 @@ import towhee
towhee.glob['path']('./img1.jpg') \
.image_decode.cv2['path', 'img']() \
.face_landmark_detection.mobilefacenet['img', 'landmark']() \
- .select('img','landmark') \
+ .select['img','landmark']() \
.show()
```
+
+
+
+
+
## Factory Constructor
Create the operator via the following factory method
@@ -51,13 +64,18 @@ Create the operator via the following factory method
supported types: `bool`, default is True, using pretrained weights.
+
+
+
+
+
## Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
**Parameters:**
- ***img***: *towhee.types.Image (a sub-class of numpy.ndarray)*
+ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
The input image.