# MobileFaceNet Face Landmark Detecter *authors: David Wang* ## Desription [MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark). ## Code Example Extract facial landmarks from './img1.jpg'. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./img1.jpg') \ .image_decode.cv2() \ .face_landmark_detection.mobilefacenet() \ .select('img','landmark') \ .to_list() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./img1.jpg') \ .image_decode.cv2['path', 'img']() \ .face_landmark_detection.mobilefacenet['img', 'landmark']() \ .select('img','landmark') \ .show() ``` result1 ## Factory Constructor Create the operator via the following factory method ***face_landmark_detection.mobilefacenet(pretrained = True)*** **Parameters:** ​ ***pretrained*** ​ whether load the pretrained weights. ​ supported types: `bool`, default is True, using pretrained weights. ## Interface An image embedding operator takes an image as input. it extracts the embedding back to ndarray. **Parameters:** ​ ***img***: *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The input image. **Returns:** *numpy.ndarray* ​ The extracted facial landmarks.