# Mobilefacenet Face Landmark Detecter *authors: David Wang* ## Desription A class of extremely efficient CNN models to extract 68 landmarks from a facial image[1]. ```python from towhee import ops model = ops.face_landmark_detection.mobilefacenet() landmark = model(img) ``` ## Factory Constructor Create the operator via the following factory method ***ops.face_landmark_detection.mobilefacenet()*** ## Interface An image embedding operator takes an image as input. it extracts the embedding back to ndarray. **Args:** ​ ***framework*** ​ the framework of the model ​ supported types: `str`, default is 'pytorch' ​ ***pretrained*** ​ whether load the pretrained weights.. ​ supported types: `bool`, default is True, using pretrained weights **Parameters:** ​ ***image***: *towhee._types.Image* ​ The input image. **Returns:**: *numpy.ndarray* ​ The extracted facial landmark. ## Code Example extracted facial landmark from './img1.jpg'. *Write the pipeline in simplified style*: ```python import towhee.DataCollection as dc dc.glob('./img1.jpg') .face_landmark_detection.mobilefacenet() .to_list() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee.DataCollection as dc dc.glob['path']('./img1.jpg') .image_decode.cv2['path', 'img']() .face_landmark_detection.mobilefacenet() .to_list() ``` ## Reference [1].https://arxiv.org/pdf/1804.07573.pdf