# MobileFaceNet Face Landmark Detector *author: David Wang*
## Description [MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image. It use less than 1 million parameters and is specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repository is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark).
## Code Example Extract facial landmarks from './img1.jpg'. *Write the pipeline in simplified style:* ```python import towhee towhee.glob('./img1.jpg') \ .image_decode.cv2() \ .face_landmark_detection.mobilefacenet() \ .to_list() ``` *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./img1.jpg') \ .image_decode.cv2['path', 'img']() \ .face_landmark_detection.mobilefacenet['img', 'landmark']() \ .select['img','landmark']() \ .show() ``` result1
## Factory Constructor Create the operator via the following factory method: ***face_landmark_detection.mobilefacenet(pretrained = True)*** **Parameters:** ​ ***pretrained*** ​ whether load the pre-trained weights. ​ supported types: `bool`, default is True, using pre-trained weights.
## Interface An image embedding operator takes an image as input. it extracts the embedding as ndarray. **Parameters:** ​ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The input image. **Returns:** *numpy.ndarray* ​ The extracted facial landmarks.