# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # adapted from https://github.com/cunjian/pytorch_face_landmark import os import sys from typing import NamedTuple from pathlib import Path import numpy as np import torch from torchvision import transforms from towhee import register from towhee.operator import NNOperator from towhee.types.image_utils import to_pil from towhee._types import Image from towhee.types import arg, to_image_color #import mobilefacenet @register(output_schema=['landmark']) class Mobilefacenet(NNOperator): """ Mobilefacenet """ def __init__(self, pretrained = True): super().__init__() sys.path.append(str(Path(__file__).parent)) from mobilefacenet_impl import MobileFaceNet self.model = MobileFaceNet([112, 112], 136) if pretrained == True: map_location = 'cpu' checkpoint = torch.load( os.path.dirname(__file__) +'/mobilefacenet_model_best.pth', map_location=map_location) self.model.load_state_dict(checkpoint['state_dict']) normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.tfms = transforms.Compose([transforms.Resize([112,112]), transforms.ToTensor(), normalize]) @arg(1, to_image_color('RGB') ) def __call__(self, img: Image): image = to_pil(img) h, w = image.size tensor = self._preprocess(image) if len(tensor.shape) == 3: tensor = torch.unsqueeze(tensor, 0) self.model.eval() landmark = self.model(tensor)[0][0] landmark = landmark.reshape(-1, 2) landmark[:, 0] = landmark[:, 0] * w landmark[:, 1] = landmark[:, 1] * h return np.asarray(landmark.cpu().detach(), dtype=np.int32) def _preprocess(self, image): return self.tfms(image) def _postprocess(self, landmark): pass def train(self): pass