# MobileFaceNet Face Landmark Detector *author: David Wang*
## Description [MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image. It use less than 1 million parameters and is specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repository is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark).
## Code Example Extract facial landmarks from './img1.jpg'. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee.dc2 import pipe, ops, DataCollection p = ( pipe.input('path') .map('path', 'img', ops.image_decode()) .map('img', 'landmark', ops.face_landmark_detection.mobilefacenet()) .output('img', 'landmark') ) DataCollection(p('./img1.jpg')).show() ``` result1
## Factory Constructor Create the operator via the following factory method: ***face_landmark_detection.mobilefacenet(pretrained = True)*** **Parameters:** ​ ***pretrained*** ​ whether load the pre-trained weights. ​ supported types: `bool`, default is True, using pre-trained weights.
## Interface An image embedding operator takes an image as input. it extracts the embedding as ndarray. **Parameters:** ​ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The input image. **Returns:** *numpy.ndarray* ​ The extracted facial landmarks.