style-transfer-animegan
copied
1 changed files with 57 additions and 1 deletions
@ -1,2 +1,58 @@ |
|||||
# style-transfer-animegan |
|
||||
|
# Pipeline: Style Transfer using AnimeGanV2 |
||||
|
|
||||
|
Authors: filip |
||||
|
|
||||
|
## Overview |
||||
|
|
||||
|
The pipeline is used to **animate images**. It uses the AnimeGanV2 to cartoonize the images. |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
**Input Arguments:** |
||||
|
|
||||
|
- img_path: |
||||
|
- the input image path |
||||
|
- supported types: `str` |
||||
|
|
||||
|
**Pipeline Output:** |
||||
|
|
||||
|
The pipeline returns a tuple `Tuple[('styled_image', numpy.ndarray)]` containing following fields: |
||||
|
|
||||
|
- styled_image: |
||||
|
- styled photo |
||||
|
- data type: `numpy.ndarray` |
||||
|
- shape: (3, x, x) |
||||
|
- format: RGB |
||||
|
- values: [0,1] |
||||
|
|
||||
|
## How to use |
||||
|
|
||||
|
1. Install [Towhee](https://github.com/towhee-io/towhee) |
||||
|
|
||||
|
```bash |
||||
|
$ pip3 install towhee |
||||
|
``` |
||||
|
|
||||
|
> You can refer to [Getting Started with Towhee](https://towhee.io/) for more details. If you have any questions, you can [submit an issue to the towhee repository](https://github.com/towhee-io/towhee/issues). |
||||
|
|
||||
|
2. Run it with Towhee |
||||
|
|
||||
|
```python |
||||
|
>>> from towhee import pipeline |
||||
|
|
||||
|
>>> img_path = 'path/to/your/image' |
||||
|
>>> embedding_pipeline = pipeline('filip-halt/style-transfer-animegan') |
||||
|
>>> embedding = embedding_pipeline(img_path) |
||||
|
``` |
||||
|
|
||||
|
## How it works |
||||
|
|
||||
|
This pipeline includes one operator: [filip-halt/animegan-style-transfer](https://hub.towhee.io/filip-halt/animegan-style-transfer). This operator stylizes the image. |
||||
|
|
||||
|
> Refer [Towhee architecture](https://github.com/towhee-io/towhee#towhee-architecture) for basic concepts in Towhee: pipeline, operator, dataframe. |
||||
|
|
||||
|
|
||||
|
## References |
||||
|
Jie Chen, Gang Liu, Xin Chen |
||||
|
"AnimeGAN: A Novel Lightweight GAN for Photo Animation." |
||||
|
ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019. |
||||
|
Loading…
Reference in new issue