logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

73 lines
2.6 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import from_pil, to_pil
@register(output_schema=['vec'])
class Blip(NNOperator):
"""
BLIP multi-modal embedding operator
"""
def __init__(self, model_name: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
from models.blip import blip_decoder
image_size = 384
model_url = self._configs()[model_name]['weights']
self.model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base')
self._modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval()
self.tfms = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
@arg(1, to_image_color('RGB'))
def __call__(self, data:):
vec = self._inference_from_image(data)
return vec
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
caption = model.generate(img, sample=False, num_beams=3, max_length=20, min_length=5)
return caption[0]
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img
def _configs(self):
config = {}
config['blip_base'] = {}
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
return config