# Image-Text Retrieval Embdding with BLIP *author: David Wang*
## Description This operator extracts features for image or text with [BLIP](https://arxiv.org/abs/2201.12086) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP).
## Code Example Load an image from path './teddy.jpg' to generate an image embedding. Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./teddy.jpg') \ .image_decode() \ .image_text_embedding.blip(model_name='blip_base', modality='image') \ .show() towhee.dc(["A teddybear on a skateboard in Times Square."]) \ .image_text_embedding.blip(model_name='blip_base', modality='text') \ .show() ``` result1 result2 *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./teddy.jpg') \ .image_decode['path', 'img']() \ .image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \ .select['img', 'vec']() \ .show() towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \ .image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \ .select['text', 'vec']() \ .show() ``` result1 result2
## Factory Constructor Create the operator via the following factory method ***blip(model_name, modality)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of BLIP. Supported model names: - blip_base ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
## Interface An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model.