logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

2.7 KiB

Image-Text Retrieval Embdding with BLIP

author: David Wang


Description

This operator extracts features for image or text with BLIP which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from salesforce/BLIP.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write the pipeline in simplified style:

import towhee

towhee.glob('./teddy.jpg') \
      .image_decode() \
      .image_text_embedding.blip(model_name='blip_base', modality='image') \
      .show()

towhee.dc(["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.blip(model_name='blip_base', modality='text') \
      .show()
result1 result2

Write a same pipeline with explicit inputs/outputs name specifications:

import towhee

towhee.glob['path']('./teddy.jpg') \
      .image_decode['path', 'img']() \
      .image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \
      .select['img', 'vec']() \
      .show()

towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \
      .select['text', 'vec']() \
      .show()
result1 result2


Factory Constructor

Create the operator via the following factory method

blip(model_name, modality)

Parameters:

model_name: str

​ The model name of BLIP. Supported model names:

  • blip_base

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

2.7 KiB

Image-Text Retrieval Embdding with BLIP

author: David Wang


Description

This operator extracts features for image or text with BLIP which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from salesforce/BLIP.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write the pipeline in simplified style:

import towhee

towhee.glob('./teddy.jpg') \
      .image_decode() \
      .image_text_embedding.blip(model_name='blip_base', modality='image') \
      .show()

towhee.dc(["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.blip(model_name='blip_base', modality='text') \
      .show()
result1 result2

Write a same pipeline with explicit inputs/outputs name specifications:

import towhee

towhee.glob['path']('./teddy.jpg') \
      .image_decode['path', 'img']() \
      .image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \
      .select['img', 'vec']() \
      .show()

towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \
      .select['text', 'vec']() \
      .show()
result1 result2


Factory Constructor

Create the operator via the following factory method

blip(model_name, modality)

Parameters:

model_name: str

​ The model name of BLIP. Supported model names:

  • blip_base

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.