camel
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
116 lines
3.6 KiB
116 lines
3.6 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import sys
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
from easydict import EasyDict as edict
|
||
|
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
from transformers import GPT2Tokenizer
|
||
|
|
||
|
from towhee.types.arg import arg, to_image_color
|
||
|
from towhee.types.image_utils import to_pil
|
||
|
from towhee.operator.base import NNOperator, OperatorFlag
|
||
|
from towhee import register
|
||
|
from towhee.models import clip
|
||
|
|
||
|
class Camel(NNOperator):
|
||
|
"""
|
||
|
Camel image captioning operator
|
||
|
"""
|
||
|
def _gen_args(self):
|
||
|
args = edict()
|
||
|
args.image_dim =
|
||
|
args.N_enc = 3
|
||
|
args.d_model = 512
|
||
|
args.d_ff = 2048
|
||
|
args.head = 8
|
||
|
args.m = 40
|
||
|
args.disable_mesh = True
|
||
|
args.d_model = 512
|
||
|
args.with_pe = True
|
||
|
return args
|
||
|
|
||
|
def __init__(self, model_name: str):
|
||
|
super().__init__()
|
||
|
sys.path.append(str(Path(__file__).parent))
|
||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
from models import Captioner
|
||
|
from data import ImageField, TextField
|
||
|
|
||
|
# Pipeline for text
|
||
|
self.text_field = TextField()
|
||
|
args = self._gen_args()
|
||
|
|
||
|
self.clip_model = clip.create_model(model_name='clip_resnet_r50x4', pretrained=True, jit=True)
|
||
|
self.clip_tfms = clip.get_transforms(model_name='clip_resnet_r50x4')
|
||
|
self.image_model = self.clip_model.visual
|
||
|
self.image_model.forward = self.image_model.intermediate_features
|
||
|
image_field = ImageField(transform=self.clip_tfms)
|
||
|
args.image_dim = self.mage_model.embed_dim
|
||
|
|
||
|
|
||
|
# Create the model
|
||
|
self.model = Captioner(args, self.text_field).to(self.device)
|
||
|
self.model.forward = self.model.beam_search
|
||
|
self.image_model = self.image_model.to(self.device)
|
||
|
|
||
|
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
||
|
self.model = self.model.eval()
|
||
|
sys.path.pop()
|
||
|
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def inference_single_data(self, data):
|
||
|
text = self._inference_from_image(data)
|
||
|
return text
|
||
|
|
||
|
def _preprocess(self, img):
|
||
|
img = to_pil(img)
|
||
|
processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device)
|
||
|
return processed_img
|
||
|
|
||
|
def __call__(self, data):
|
||
|
if not isinstance(data, list):
|
||
|
data = [data]
|
||
|
else:
|
||
|
data = data
|
||
|
results = []
|
||
|
for single_data in data:
|
||
|
result = self.inference_single_data(single_data)
|
||
|
results.append(result)
|
||
|
if len(data) == 1:
|
||
|
return results[0]
|
||
|
else:
|
||
|
return results
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def _inference_from_image(self, img):
|
||
|
img = self._preprocess(img)
|
||
|
text, _ = self.model.beam_search(img, beam_size=5, out_size=1)
|
||
|
return text
|
||
|
|
||
|
def _configs(self):
|
||
|
config = {}
|
||
|
config['clipcap_coco'] = {}
|
||
|
config['clipcap_coco']['weights'] = 'coco_weights.pt'
|
||
|
config['clipcap_conceptual'] = {}
|
||
|
config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt'
|
||
|
return config
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
pass
|