logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

116 lines
3.6 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
from pathlib import Path
from easydict import EasyDict as edict
import torch
from torchvision import transforms
from transformers import GPT2Tokenizer
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
from towhee.models import clip
class Camel(NNOperator):
"""
Camel image captioning operator
"""
def _gen_args(self):
args = edict()
args.image_dim =
args.N_enc = 3
args.d_model = 512
args.d_ff = 2048
args.head = 8
args.m = 40
args.disable_mesh = True
args.d_model = 512
args.with_pe = True
return args
def __init__(self, model_name: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
self.device = "cuda" if torch.cuda.is_available() else "cpu"
from models import Captioner
from data import ImageField, TextField
# Pipeline for text
self.text_field = TextField()
args = self._gen_args()
self.clip_model = clip.create_model(model_name='clip_resnet_r50x4', pretrained=True, jit=True)
self.clip_tfms = clip.get_transforms(model_name='clip_resnet_r50x4')
self.image_model = self.clip_model.visual
self.image_model.forward = self.image_model.intermediate_features
image_field = ImageField(transform=self.clip_tfms)
args.image_dim = self.mage_model.embed_dim
# Create the model
self.model = Captioner(args, self.text_field).to(self.device)
self.model.forward = self.model.beam_search
self.image_model = self.image_model.to(self.device)
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
self.model = self.model.eval()
sys.path.pop()
@arg(1, to_image_color('RGB'))
def inference_single_data(self, data):
text = self._inference_from_image(data)
return text
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device)
return processed_img
def __call__(self, data):
if not isinstance(data, list):
data = [data]
else:
data = data
results = []
for single_data in data:
result = self.inference_single_data(single_data)
results.append(result)
if len(data) == 1:
return results[0]
else:
return results
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
text, _ = self.model.beam_search(img, beam_size=5, out_size=1)
return text
def _configs(self):
config = {}
config['clipcap_coco'] = {}
config['clipcap_coco']['weights'] = 'coco_weights.pt'
config['clipcap_conceptual'] = {}
config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt'
return config
if __name__ == '__main__':
pass