import numpy as np import torch from torch import nn from models.containers import Module class ScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h): ''' :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads ''' super(ScaledDotProductAttention, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): nn.init.xavier_uniform_(self.fc_q.weight) nn.init.xavier_uniform_(self.fc_k.weight) nn.init.xavier_uniform_(self.fc_v.weight) nn.init.xavier_uniform_(self.fc_o.weight) nn.init.constant_(self.fc_q.bias, 0) nn.init.constant_(self.fc_k.bias, 0) nn.init.constant_(self.fc_v.bias, 0) nn.init.constant_(self.fc_o.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, nk) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v) out = self.fc_o(out) # (b_s, nq, d_model) return out class ScaledDotProductAttentionMemory(nn.Module): """ Scaled dot-product attention with memory """ def __init__(self, d_model, d_k, d_v, h, m): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads :param m: Number of memory slots """ super(ScaledDotProductAttentionMemory, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.m = m if self.m > 0: self.m_k = nn.Parameter(torch.FloatTensor(1, m, h * d_k)) self.m_v = nn.Parameter(torch.FloatTensor(1, m, h * d_v)) self.init_weights() def init_weights(self): nn.init.xavier_uniform_(self.fc_q.weight) nn.init.xavier_uniform_(self.fc_k.weight) nn.init.xavier_uniform_(self.fc_v.weight) nn.init.xavier_uniform_(self.fc_o.weight) nn.init.constant_(self.fc_q.bias, 0) nn.init.constant_(self.fc_k.bias, 0) nn.init.constant_(self.fc_v.bias, 0) nn.init.constant_(self.fc_o.bias, 0) if self.m > 0: nn.init.normal_(self.m_k, 0, 1 / self.d_k) nn.init.normal_(self.m_v, 0, 1 / self.m) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) if self.m > 0: m_k = np.sqrt(self.d_k) * self.m_k.expand(b_s, self.m, self.h * self.d_k) m_v = np.sqrt(self.m) * self.m_v.expand(b_s, self.m, self.h * self.d_v) k = torch.cat([self.fc_k(keys), m_k], 1) v = torch.cat([self.fc_v(values), m_v], 1) else: k = self.fc_k(keys) v = self.fc_v(values) k = k.view(b_s, nk + self.m, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) v = v.view(b_s, nk + self.m, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, nk) if attention_weights is not None: att = torch.cat([att[:, :, :, :nk] * attention_weights, att[:, :, :, nk:]], -1) if attention_mask is not None: att[:, :, :, :nk] = att[:, :, :, :nk].masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v) out = self.fc_o(out) # (b_s, nq, d_model) return out class MultiHeadAttention(Module): """ Multi-head attention layer with Dropout and Layer Normalization. """ def __init__(self, d_model, d_k, d_v, h, dropout=.1, identity_map_reordering=False, can_be_stateful=False, attention_module=None, attention_module_kwargs=None): super(MultiHeadAttention, self).__init__() self.identity_map_reordering = identity_map_reordering if attention_module is not None: if attention_module_kwargs is not None: self.attention = attention_module(d_model=d_model, d_k=d_k, d_v=d_v, h=h, **attention_module_kwargs) else: self.attention = attention_module(d_model=d_model, d_k=d_k, d_v=d_v, h=h) else: self.attention = ScaledDotProductAttention(d_model=d_model, d_k=d_k, d_v=d_v, h=h) self.dropout = nn.Dropout(p=dropout) self.layer_norm = nn.LayerNorm(d_model) self.can_be_stateful = can_be_stateful if self.can_be_stateful: self.register_state('running_keys', None) self.register_state('running_values', None) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): if self.can_be_stateful and self._is_stateful: if self.running_keys is None: self.running_keys = keys self.running_values = values else: self.running_keys = torch.cat([self.running_keys, keys], 1) self.running_values = torch.cat([self.running_values, values], 1) keys = self.running_keys values = self.running_values if self.identity_map_reordering: q_norm = self.layer_norm(queries) k_norm = self.layer_norm(keys) v_norm = self.layer_norm(values) out = self.attention(q_norm, k_norm, v_norm, attention_mask, attention_weights) out = queries + self.dropout(torch.relu(out)) else: out = self.attention(queries, keys, values, attention_mask, attention_weights) out = self.dropout(out) out = self.layer_norm(queries + out) return out