# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os from pathlib import Path import torch from torchvision import transforms from transformers import GPT2Tokenizer from towhee.types.arg import arg, to_image_color from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee import register from towhee.models import clip from towhee.command.s3 import S3Bucket from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup class Capdec(NNOperator): """ CapDec image captioning operator """ def __init__(self, model_name: str): super().__init__() sys.path.append(str(Path(__file__).parent)) from modules import ClipCaptionModel, generate_beam, generate2 path = str(Path(__file__).parent) config = self._configs()[model_name] s3_bucket = S3Bucket() s3_bucket.download_file(config['weights'], path + '/weights/') model_path = path + '/weights/' + os.path.basename(config['weights']) self.device = "cuda" if torch.cuda.is_available() else "cpu" self.clip_caption_model = ClipCaptionModel() self.clip_caption_model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) self.clip_caption_model.to(self.device) self.clip_caption_model.eval() self.clip_model = clip.create_model(model_name='clip_resnet_r50x4', pretrained=True, jit=True) self.clip_model.to(self.device) self.clip_tfms = clip.get_transforms(model_name='clip_resnet_r50x4') self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2") self.generate_beam = generate_beam self.generate2 = generate2 @arg(1, to_image_color('RGB')) def inference_single_data(self, data): text = self._inference_from_image(data) return text def _preprocess(self, img): img = to_pil(img) processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device) return processed_img def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) use_beam_search = True with torch.no_grad(): prefix = self.clip_model.encode_image(img)[0].to(self.device, dtype=torch.float32).unsqueeze(0) prefix_embed = self.clip_caption_model.clip_project(prefix).reshape(1, 40, -1) if use_beam_search: generated_text_prefix = self.generate_beam(self.clip_caption_model, self.tokenizer, embed=prefix_embed)[0] else: generated_text_prefix = self.generate2(self.clip_caption_model, self.tokenizer, embed=prefix_embed) return generated_text_prefix def _configs(self): config = {} config['capdec_noise_0'] = {} config['capdec_noise_0']['weights'] = 'image-captioning/capdec/0.pt' config['capdec_noise_01'] = {} config['capdec_noise_01']['weights'] = 'image-captioning/capdec/01.pt' config['capdec_noise_001'] = {} config['capdec_noise_001']['weights'] = 'image-captioning/capdec/001.pt' config['capdec_noise_0001'] = {} config['capdec_noise_0001']['weights'] = 'image-captioning/capdec/0001.pt' return config