clip-caption-reward
              
                 
                
            
          copied
				 7 changed files with 771 additions and 0 deletions
			
			
		| @ -0,0 +1,2 @@ | |||
| *.pyc | |||
| 
 | |||
| @ -0,0 +1 @@ | |||
| from .clip import * | |||
								
									Binary file not shown.
								
							
						
					| @ -0,0 +1,193 @@ | |||
| import hashlib | |||
| import os | |||
| import urllib | |||
| import warnings | |||
| from typing import Union, List | |||
| 
 | |||
| import torch | |||
| from PIL import Image | |||
| from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |||
| from tqdm import tqdm | |||
| 
 | |||
| from .model import build_model | |||
| from .simple_tokenizer import SimpleTokenizer as _Tokenizer | |||
| 
 | |||
| __all__ = ["available_models", "load", "tokenize"] | |||
| _tokenizer = _Tokenizer() | |||
| 
 | |||
| _MODELS = { | |||
|     "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |||
|     "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |||
|     "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |||
|     "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |||
| } | |||
| 
 | |||
| 
 | |||
| def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")): | |||
|     os.makedirs(root, exist_ok=True) | |||
|     filename = os.path.basename(url) | |||
| 
 | |||
|     expected_sha256 = url.split("/")[-2] | |||
|     download_target = os.path.join(root, filename) | |||
| 
 | |||
|     if os.path.exists(download_target) and not os.path.isfile(download_target): | |||
|         raise RuntimeError(f"{download_target} exists and is not a regular file") | |||
| 
 | |||
|     if os.path.isfile(download_target): | |||
|         if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: | |||
|             return download_target | |||
|         else: | |||
|             warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |||
| 
 | |||
|     with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |||
|         with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: | |||
|             while True: | |||
|                 buffer = source.read(8192) | |||
|                 if not buffer: | |||
|                     break | |||
| 
 | |||
|                 output.write(buffer) | |||
|                 loop.update(len(buffer)) | |||
| 
 | |||
|     if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: | |||
|         raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") | |||
| 
 | |||
|     return download_target | |||
| 
 | |||
| 
 | |||
| def _transform(n_px): | |||
|     return Compose([ | |||
|         Resize(n_px, interpolation=Image.BICUBIC), | |||
|         CenterCrop(n_px), | |||
|         lambda image: image.convert("RGB"), | |||
|         ToTensor(), | |||
|         Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |||
|     ]) | |||
| 
 | |||
| 
 | |||
| def available_models() -> List[str]: | |||
|     """Returns the names of available CLIP models""" | |||
|     return list(_MODELS.keys()) | |||
| 
 | |||
| 
 | |||
| def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True): | |||
|     """Load a CLIP model | |||
| 
 | |||
|     Parameters | |||
|     ---------- | |||
|     name : str | |||
|         A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict | |||
| 
 | |||
|     device : Union[str, torch.device] | |||
|         The device to put the loaded model | |||
| 
 | |||
|     jit : bool | |||
|         Whether to load the optimized JIT model (default) or more hackable non-JIT model. | |||
| 
 | |||
|     Returns | |||
|     ------- | |||
|     model : torch.nn.Module | |||
|         The CLIP model | |||
| 
 | |||
|     preprocess : Callable[[PIL.Image], torch.Tensor] | |||
|         A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input | |||
|     """ | |||
|     if name in _MODELS: | |||
|         model_path = _download(_MODELS[name]) | |||
|     elif os.path.isfile(name): | |||
|         model_path = name | |||
|     else: | |||
|         raise RuntimeError(f"Model {name} not found; available models = {available_models()}") | |||
| 
 | |||
|     try: | |||
|         # loading JIT archive | |||
|         model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() | |||
|         state_dict = None | |||
|     except RuntimeError: | |||
|         # loading saved state dict | |||
|         if jit: | |||
|             warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") | |||
|             jit = False | |||
|         state_dict = torch.load(model_path, map_location="cpu") | |||
| 
 | |||
|     if not jit: | |||
|         model = build_model(state_dict or model.state_dict()).to(device) | |||
|         if str(device) == "cpu": | |||
|             model.float() | |||
|         return model, _transform(model.visual.input_resolution) | |||
| 
 | |||
|     # patch the device names | |||
|     device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) | |||
|     device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] | |||
| 
 | |||
|     def patch_device(module): | |||
|         graphs = [module.graph] if hasattr(module, "graph") else [] | |||
|         if hasattr(module, "forward1"): | |||
|             graphs.append(module.forward1.graph) | |||
| 
 | |||
|         for graph in graphs: | |||
|             for node in graph.findAllNodes("prim::Constant"): | |||
|                 if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): | |||
|                     node.copyAttributes(device_node) | |||
| 
 | |||
|     model.apply(patch_device) | |||
|     patch_device(model.encode_image) | |||
|     patch_device(model.encode_text) | |||
| 
 | |||
|     # patch dtype to float32 on CPU | |||
|     if str(device) == "cpu": | |||
|         float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) | |||
|         float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] | |||
|         float_node = float_input.node() | |||
| 
 | |||
|         def patch_float(module): | |||
|             graphs = [module.graph] if hasattr(module, "graph") else [] | |||
|             if hasattr(module, "forward1"): | |||
|                 graphs.append(module.forward1.graph) | |||
| 
 | |||
|             for graph in graphs: | |||
|                 for node in graph.findAllNodes("aten::to"): | |||
|                     inputs = list(node.inputs()) | |||
|                     for i in [1, 2]:  # dtype can be the second or third argument to aten::to() | |||
|                         if inputs[i].node()["value"] == 5: | |||
|                             inputs[i].node().copyAttributes(float_node) | |||
| 
 | |||
|         model.apply(patch_float) | |||
|         patch_float(model.encode_image) | |||
|         patch_float(model.encode_text) | |||
| 
 | |||
|         model.float() | |||
| 
 | |||
|     return model, _transform(model.input_resolution.item()) | |||
| 
 | |||
| 
 | |||
| def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: | |||
|     """ | |||
|     Returns the tokenized representation of given input string(s) | |||
| 
 | |||
|     Parameters | |||
|     ---------- | |||
|     texts : Union[str, List[str]] | |||
|         An input string or a list of input strings to tokenize | |||
| 
 | |||
|     context_length : int | |||
|         The context length to use; all CLIP models use 77 as the context length | |||
| 
 | |||
|     Returns | |||
|     ------- | |||
|     A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] | |||
|     """ | |||
|     if isinstance(texts, str): | |||
|         texts = [texts] | |||
| 
 | |||
|     sot_token = _tokenizer.encoder["<|startoftext|>"] | |||
|     eot_token = _tokenizer.encoder["<|endoftext|>"] | |||
|     all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] | |||
|     result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |||
| 
 | |||
|     for i, tokens in enumerate(all_tokens): | |||
|         if len(tokens) > context_length: | |||
|             raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |||
|         result[i, :len(tokens)] = torch.tensor(tokens) | |||
| 
 | |||
|     return result | |||
| @ -0,0 +1,437 @@ | |||
| from collections import OrderedDict | |||
| from typing import Tuple, Union | |||
| 
 | |||
| import torch | |||
| import torch.nn.functional as F | |||
| from torch import nn | |||
| 
 | |||
| 
 | |||
| class Bottleneck(nn.Module): | |||
|     expansion = 4 | |||
| 
 | |||
|     def __init__(self, inplanes, planes, stride=1): | |||
|         super().__init__() | |||
| 
 | |||
|         # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |||
|         self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |||
|         self.bn1 = nn.BatchNorm2d(planes) | |||
| 
 | |||
|         self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |||
|         self.bn2 = nn.BatchNorm2d(planes) | |||
| 
 | |||
|         self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |||
| 
 | |||
|         self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |||
|         self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |||
| 
 | |||
|         self.relu = nn.ReLU(inplace=True) | |||
|         self.downsample = None | |||
|         self.stride = stride | |||
| 
 | |||
|         if stride > 1 or inplanes != planes * Bottleneck.expansion: | |||
|             # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |||
|             self.downsample = nn.Sequential(OrderedDict([ | |||
|                 ("-1", nn.AvgPool2d(stride)), | |||
|                 ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |||
|                 ("1", nn.BatchNorm2d(planes * self.expansion)) | |||
|             ])) | |||
| 
 | |||
|     def forward(self, x: torch.Tensor): | |||
|         identity = x | |||
| 
 | |||
|         out = self.relu(self.bn1(self.conv1(x))) | |||
|         out = self.relu(self.bn2(self.conv2(out))) | |||
|         out = self.avgpool(out) | |||
|         out = self.bn3(self.conv3(out)) | |||
| 
 | |||
|         if self.downsample is not None: | |||
|             identity = self.downsample(x) | |||
| 
 | |||
|         out += identity | |||
|         out = self.relu(out) | |||
|         return out | |||
| 
 | |||
| 
 | |||
| class AttentionPool2d(nn.Module): | |||
|     def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |||
|         super().__init__() | |||
|         self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |||
|         self.k_proj = nn.Linear(embed_dim, embed_dim) | |||
|         self.q_proj = nn.Linear(embed_dim, embed_dim) | |||
|         self.v_proj = nn.Linear(embed_dim, embed_dim) | |||
|         self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |||
|         self.num_heads = num_heads | |||
| 
 | |||
|     def forward(self, x): | |||
|         x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC | |||
|         # print(x.shape, self.positional_embedding.shape) | |||
|         x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC | |||
|         x = x + self.positional_embedding[0, :, None, :].to(x.dtype)  # (HW+1)NC | |||
|         x, _ = F.multi_head_attention_forward( | |||
|             query=x, key=x, value=x, | |||
|             embed_dim_to_check=x.shape[-1], | |||
|             num_heads=self.num_heads, | |||
|             q_proj_weight=self.q_proj.weight, | |||
|             k_proj_weight=self.k_proj.weight, | |||
|             v_proj_weight=self.v_proj.weight, | |||
|             in_proj_weight=None, | |||
|             in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |||
|             bias_k=None, | |||
|             bias_v=None, | |||
|             add_zero_attn=False, | |||
|             dropout_p=0, | |||
|             out_proj_weight=torch.ones_like(self.q_proj.weight), | |||
|             out_proj_bias=torch.zeros_like(self.q_proj.bias), | |||
|             # out_proj_weight=self.c_proj.weight, | |||
|             # out_proj_bias=self.c_proj.bias, | |||
|             use_separate_proj_weight=True, | |||
|             training=self.training, | |||
|             need_weights=False | |||
|         ) | |||
| 
 | |||
|         return x[0] | |||
| 
 | |||
| 
 | |||
| class ModifiedResNet(nn.Module): | |||
|     """ | |||
|     A ResNet class that is similar to torchvision's but contains the following changes: | |||
|     - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |||
|     - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |||
|     - The final pooling layer is a QKV attention instead of an average pool | |||
|     """ | |||
| 
 | |||
|     def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): | |||
|         super().__init__() | |||
|         self.output_dim = output_dim | |||
|         self.input_resolution = input_resolution | |||
| 
 | |||
|         # the 3-layer stem | |||
|         self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) | |||
|         self.bn1 = nn.BatchNorm2d(width // 2) | |||
|         self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) | |||
|         self.bn2 = nn.BatchNorm2d(width // 2) | |||
|         self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |||
|         self.bn3 = nn.BatchNorm2d(width) | |||
|         self.avgpool = nn.AvgPool2d(2) | |||
|         self.relu = nn.ReLU(inplace=True) | |||
| 
 | |||
|         # residual layers | |||
|         self._inplanes = width  # this is a *mutable* variable used during construction | |||
|         self.layer1 = self._make_layer(width, layers[0]) | |||
|         self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |||
|         self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |||
|         self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |||
| 
 | |||
|         embed_dim = width * 32  # the ResNet feature dimension | |||
|         self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) | |||
| 
 | |||
|     def _make_layer(self, planes, blocks, stride=1): | |||
|         layers = [Bottleneck(self._inplanes, planes, stride)] | |||
| 
 | |||
|         self._inplanes = planes * Bottleneck.expansion | |||
|         for _ in range(1, blocks): | |||
|             layers.append(Bottleneck(self._inplanes, planes)) | |||
| 
 | |||
|         return nn.Sequential(*layers) | |||
| 
 | |||
|     def forward(self, x): | |||
|         def stem(x): | |||
|             for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: | |||
|                 x = self.relu(bn(conv(x))) | |||
|             x = self.avgpool(x) | |||
|             return x | |||
| 
 | |||
|         x = x.type(self.conv1.weight.dtype) | |||
|         x = stem(x) | |||
|         x = self.layer1(x) | |||
|         x = self.layer2(x) | |||
|         x = self.layer3(x) | |||
|         x = self.layer4(x) | |||
|         # print(x.shape) | |||
|         # x = self.attnpool(x) | |||
|         attnpool = self.attnpool(x) | |||
| 
 | |||
|         return (x, attnpool) | |||
| 
 | |||
| 
 | |||
| class LayerNorm(nn.LayerNorm): | |||
|     """Subclass torch's LayerNorm to handle fp16.""" | |||
| 
 | |||
|     def forward(self, x: torch.Tensor): | |||
|         orig_type = x.dtype | |||
|         ret = super().forward(x.type(torch.float32)) | |||
|         return ret.type(orig_type) | |||
| 
 | |||
| 
 | |||
| class QuickGELU(nn.Module): | |||
|     def forward(self, x: torch.Tensor): | |||
|         return x * torch.sigmoid(1.702 * x) | |||
| 
 | |||
| 
 | |||
| class ResidualAttentionBlock(nn.Module): | |||
|     def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |||
|         super().__init__() | |||
| 
 | |||
|         self.attn = nn.MultiheadAttention(d_model, n_head) | |||
|         self.ln_1 = LayerNorm(d_model) | |||
|         self.mlp = nn.Sequential(OrderedDict([ | |||
|             ("c_fc", nn.Linear(d_model, d_model * 4)), | |||
|             ("gelu", QuickGELU()), | |||
|             ("c_proj", nn.Linear(d_model * 4, d_model)) | |||
|         ])) | |||
|         self.ln_2 = LayerNorm(d_model) | |||
|         self.attn_mask = attn_mask | |||
| 
 | |||
|     def attention(self, x: torch.Tensor): | |||
|         self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |||
|         return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |||
| 
 | |||
|     def forward(self, x: torch.Tensor): | |||
|         x = x + self.attention(self.ln_1(x)) | |||
|         x = x + self.mlp(self.ln_2(x)) | |||
|         return x | |||
| 
 | |||
| 
 | |||
| class Transformer(nn.Module): | |||
|     def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): | |||
|         super().__init__() | |||
|         self.width = width | |||
|         self.layers = layers | |||
|         self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) | |||
| 
 | |||
|     def forward(self, x: torch.Tensor): | |||
|         return self.resblocks(x) | |||
| 
 | |||
| 
 | |||
| class VisualTransformer(nn.Module): | |||
|     def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): | |||
|         super().__init__() | |||
|         self.input_resolution = input_resolution | |||
|         self.output_dim = output_dim | |||
|         self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |||
| 
 | |||
|         scale = width ** -0.5 | |||
|         self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |||
|         self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) | |||
|         self.ln_pre = LayerNorm(width) | |||
| 
 | |||
|         self.transformer = Transformer(width, layers, heads) | |||
| 
 | |||
|         self.ln_post = LayerNorm(width) | |||
|         self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |||
| 
 | |||
|     def forward(self, x: torch.Tensor): | |||
|         x = self.conv1(x)  # shape = [*, width, grid, grid] | |||
|         x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2] | |||
|         x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width] | |||
|         x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width] | |||
|         x = x + self.positional_embedding.to(x.dtype) | |||
|         x = self.ln_pre(x) | |||
| 
 | |||
|         x = x.permute(1, 0, 2)  # NLD -> LND | |||
|         x = self.transformer(x) | |||
|         x = x.permute(1, 0, 2)  # LND -> NLD | |||
| 
 | |||
|         # x = self.ln_post(x[:, 0, :]) | |||
| 
 | |||
|         x = self.ln_post(x) | |||
|         # if self.proj is not None: | |||
|         #     x = x @ self.proj | |||
| 
 | |||
|         return x | |||
| 
 | |||
| 
 | |||
| class CLIP(nn.Module): | |||
|     def __init__(self, | |||
|                  embed_dim: int, | |||
|                  # vision | |||
|                  image_resolution: int, | |||
|                  vision_layers: Union[Tuple[int, int, int, int], int], | |||
|                  vision_width: int, | |||
|                  vision_patch_size: int, | |||
|                  # text | |||
|                  context_length: int, | |||
|                  vocab_size: int, | |||
|                  transformer_width: int, | |||
|                  transformer_heads: int, | |||
|                  transformer_layers: int | |||
|                  ): | |||
|         super().__init__() | |||
| 
 | |||
|         self.context_length = context_length | |||
| 
 | |||
|         if isinstance(vision_layers, (tuple, list)): | |||
|             vision_heads = vision_width * 32 // 64 | |||
|             self.visual = ModifiedResNet( | |||
|                 layers=vision_layers, | |||
|                 output_dim=embed_dim, | |||
|                 heads=vision_heads, | |||
|                 input_resolution=image_resolution, | |||
|                 width=vision_width | |||
|             ) | |||
|         else: | |||
|             vision_heads = vision_width // 64 | |||
|             self.visual = VisualTransformer( | |||
|                 input_resolution=image_resolution, | |||
|                 patch_size=vision_patch_size, | |||
|                 width=vision_width, | |||
|                 layers=vision_layers, | |||
|                 heads=vision_heads, | |||
|                 output_dim=embed_dim | |||
|             ) | |||
| 
 | |||
|         self.transformer = Transformer( | |||
|             width=transformer_width, | |||
|             layers=transformer_layers, | |||
|             heads=transformer_heads, | |||
|             attn_mask=self.build_attention_mask() | |||
|         ) | |||
| 
 | |||
|         self.vocab_size = vocab_size | |||
|         self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |||
|         self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) | |||
|         self.ln_final = LayerNorm(transformer_width) | |||
| 
 | |||
|         self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |||
|         self.logit_scale = nn.Parameter(torch.ones([])) | |||
| 
 | |||
|         self.initialize_parameters() | |||
| 
 | |||
|     def initialize_parameters(self): | |||
|         nn.init.normal_(self.token_embedding.weight, std=0.02) | |||
|         nn.init.normal_(self.positional_embedding, std=0.01) | |||
| 
 | |||
|         if isinstance(self.visual, ModifiedResNet): | |||
|             if self.visual.attnpool is not None: | |||
|                 std = self.visual.attnpool.c_proj.in_features ** -0.5 | |||
|                 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) | |||
|                 nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) | |||
|                 nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) | |||
|                 nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) | |||
| 
 | |||
|             for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: | |||
|                 for name, param in resnet_block.named_parameters(): | |||
|                     if name.endswith("bn3.weight"): | |||
|                         nn.init.zeros_(param) | |||
| 
 | |||
|         proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |||
|         attn_std = self.transformer.width ** -0.5 | |||
|         fc_std = (2 * self.transformer.width) ** -0.5 | |||
|         for block in self.transformer.resblocks: | |||
|             nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |||
|             nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |||
|             nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |||
|             nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |||
| 
 | |||
|         if self.text_projection is not None: | |||
|             nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |||
| 
 | |||
|     def build_attention_mask(self): | |||
|         # lazily create causal attention mask, with full attention between the vision tokens | |||
|         # pytorch uses additive attention mask; fill with -inf | |||
|         mask = torch.empty(self.context_length, self.context_length) | |||
|         mask.fill_(float("-inf")) | |||
|         mask.triu_(1)  # zero out the lower diagonal | |||
|         return mask | |||
| 
 | |||
|     @property | |||
|     def dtype(self): | |||
|         return self.visual.conv1.weight.dtype | |||
| 
 | |||
|     def encode_image(self, image): | |||
|         return self.visual(image.type(self.dtype)) | |||
| 
 | |||
|     def encode_text(self, text): | |||
|         x = self.token_embedding(text).type(self.dtype)  # [batch_size, n_ctx, d_model] | |||
| 
 | |||
|         x = x + self.positional_embedding.type(self.dtype) | |||
|         x = x.permute(1, 0, 2)  # NLD -> LND | |||
|         x = self.transformer(x) | |||
|         x = x.permute(1, 0, 2)  # LND -> NLD | |||
|         x = self.ln_final(x).type(self.dtype) | |||
| 
 | |||
|         # x.shape = [batch_size, n_ctx, transformer.width] | |||
|         # take features from the eot embedding (eot_token is the highest number in each sequence) | |||
|         x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |||
| 
 | |||
|         return x | |||
| 
 | |||
|     def forward(self, image, text): | |||
|         image_features = self.encode_image(image) | |||
|         text_features = self.encode_text(text) | |||
| 
 | |||
|         # normalized features | |||
|         image_features = image_features / image_features.norm(dim=-1, keepdim=True) | |||
|         text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |||
| 
 | |||
|         # cosine similarity as logits | |||
|         logit_scale = self.logit_scale.exp() | |||
|         logits_per_image = logit_scale * image_features @ text_features.t() | |||
|         logits_per_text = logit_scale * text_features @ image_features.t() | |||
| 
 | |||
|         # shape = [global_batch_size, global_batch_size] | |||
|         return logits_per_image, logits_per_text | |||
| 
 | |||
| 
 | |||
| def convert_weights(model: nn.Module): | |||
|     """Convert applicable model parameters to fp16""" | |||
| 
 | |||
|     def _convert_weights_to_fp16(l): | |||
|         if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
|             l.weight.data = l.weight.data.half() | |||
|             if l.bias is not None: | |||
|                 l.bias.data = l.bias.data.half() | |||
| 
 | |||
|         if isinstance(l, nn.MultiheadAttention): | |||
|             for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |||
|                 tensor = getattr(l, attr) | |||
|                 if tensor is not None: | |||
|                     tensor.data = tensor.data.half() | |||
| 
 | |||
|         for name in ["text_projection", "proj"]: | |||
|             if hasattr(l, name): | |||
|                 attr = getattr(l, name) | |||
|                 if attr is not None: | |||
|                     attr.data = attr.data.half() | |||
| 
 | |||
|     model.apply(_convert_weights_to_fp16) | |||
| 
 | |||
| 
 | |||
| def build_model(state_dict: dict): | |||
|     vit = "visual.proj" in state_dict | |||
| 
 | |||
|     if vit: | |||
|         vision_width = state_dict["visual.conv1.weight"].shape[0] | |||
|         vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |||
|         vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |||
|         grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |||
|         image_resolution = vision_patch_size * grid_size | |||
|     else: | |||
|         counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |||
|         vision_layers = tuple(counts) | |||
|         vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |||
|         output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |||
|         vision_patch_size = None | |||
|         assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |||
|         image_resolution = output_width * 32 | |||
| 
 | |||
|     embed_dim = state_dict["text_projection"].shape[1] | |||
|     context_length = state_dict["positional_embedding"].shape[0] | |||
|     vocab_size = state_dict["token_embedding.weight"].shape[0] | |||
|     transformer_width = state_dict["ln_final.weight"].shape[0] | |||
|     transformer_heads = transformer_width // 64 | |||
|     transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |||
| 
 | |||
|     model = CLIP( | |||
|         embed_dim, | |||
|         image_resolution, vision_layers, vision_width, vision_patch_size, | |||
|         context_length, vocab_size, transformer_width, transformer_heads, transformer_layers | |||
|     ) | |||
| 
 | |||
|     for key in ["input_resolution", "context_length", "vocab_size"]: | |||
|         if key in state_dict: | |||
|             del state_dict[key] | |||
| 
 | |||
|     convert_weights(model) | |||
|     model.load_state_dict(state_dict) | |||
|     return model.eval() | |||
| @ -0,0 +1,132 @@ | |||
| import gzip | |||
| import html | |||
| import os | |||
| from functools import lru_cache | |||
| 
 | |||
| import ftfy | |||
| import regex as re | |||
| 
 | |||
| 
 | |||
| @lru_cache() | |||
| def default_bpe(): | |||
|     return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") | |||
| 
 | |||
| 
 | |||
| @lru_cache() | |||
| def bytes_to_unicode(): | |||
|     """ | |||
|     Returns list of utf-8 byte and a corresponding list of unicode strings. | |||
|     The reversible bpe codes work on unicode strings. | |||
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |||
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |||
|     This is a signficant percentage of your normal, say, 32K bpe vocab. | |||
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |||
|     And avoids mapping to whitespace/control characters the bpe code barfs on. | |||
|     """ | |||
|     bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |||
|     cs = bs[:] | |||
|     n = 0 | |||
|     for b in range(2**8): | |||
|         if b not in bs: | |||
|             bs.append(b) | |||
|             cs.append(2**8+n) | |||
|             n += 1 | |||
|     cs = [chr(n) for n in cs] | |||
|     return dict(zip(bs, cs)) | |||
| 
 | |||
| 
 | |||
| def get_pairs(word): | |||
|     """Return set of symbol pairs in a word. | |||
|     Word is represented as tuple of symbols (symbols being variable-length strings). | |||
|     """ | |||
|     pairs = set() | |||
|     prev_char = word[0] | |||
|     for char in word[1:]: | |||
|         pairs.add((prev_char, char)) | |||
|         prev_char = char | |||
|     return pairs | |||
| 
 | |||
| 
 | |||
| def basic_clean(text): | |||
|     text = ftfy.fix_text(text) | |||
|     text = html.unescape(html.unescape(text)) | |||
|     return text.strip() | |||
| 
 | |||
| 
 | |||
| def whitespace_clean(text): | |||
|     text = re.sub(r'\s+', ' ', text) | |||
|     text = text.strip() | |||
|     return text | |||
| 
 | |||
| 
 | |||
| class SimpleTokenizer(object): | |||
|     def __init__(self, bpe_path: str = default_bpe()): | |||
|         self.byte_encoder = bytes_to_unicode() | |||
|         self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |||
|         merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') | |||
|         merges = merges[1:49152-256-2+1] | |||
|         merges = [tuple(merge.split()) for merge in merges] | |||
|         vocab = list(bytes_to_unicode().values()) | |||
|         vocab = vocab + [v+'</w>' for v in vocab] | |||
|         for merge in merges: | |||
|             vocab.append(''.join(merge)) | |||
|         vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |||
|         self.encoder = dict(zip(vocab, range(len(vocab)))) | |||
|         self.decoder = {v: k for k, v in self.encoder.items()} | |||
|         self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |||
|         self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |||
|         self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) | |||
| 
 | |||
|     def bpe(self, token): | |||
|         if token in self.cache: | |||
|             return self.cache[token] | |||
|         word = tuple(token[:-1]) + ( token[-1] + '</w>',) | |||
|         pairs = get_pairs(word) | |||
| 
 | |||
|         if not pairs: | |||
|             return token+'</w>' | |||
| 
 | |||
|         while True: | |||
|             bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |||
|             if bigram not in self.bpe_ranks: | |||
|                 break | |||
|             first, second = bigram | |||
|             new_word = [] | |||
|             i = 0 | |||
|             while i < len(word): | |||
|                 try: | |||
|                     j = word.index(first, i) | |||
|                     new_word.extend(word[i:j]) | |||
|                     i = j | |||
|                 except: | |||
|                     new_word.extend(word[i:]) | |||
|                     break | |||
| 
 | |||
|                 if word[i] == first and i < len(word)-1 and word[i+1] == second: | |||
|                     new_word.append(first+second) | |||
|                     i += 2 | |||
|                 else: | |||
|                     new_word.append(word[i]) | |||
|                     i += 1 | |||
|             new_word = tuple(new_word) | |||
|             word = new_word | |||
|             if len(word) == 1: | |||
|                 break | |||
|             else: | |||
|                 pairs = get_pairs(word) | |||
|         word = ' '.join(word) | |||
|         self.cache[token] = word | |||
|         return word | |||
| 
 | |||
|     def encode(self, text): | |||
|         bpe_tokens = [] | |||
|         text = whitespace_clean(basic_clean(text)).lower() | |||
|         for token in re.findall(self.pat, text): | |||
|             token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |||
|             bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |||
|         return bpe_tokens | |||
| 
 | |||
|     def decode(self, tokens): | |||
|         text = ''.join([self.decoder[token] for token in tokens]) | |||
|         text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') | |||
|         return text | |||
								
									Binary file not shown.
								
							
						
					
					Loading…
					
					
				
		Reference in new issue
	
	