# Fine-grained Image Captioning with CLIP Reward
*author: David Wang*
## Description
This operator generates the caption with [CLIPReward](https://arxiv.org/abs/2205.13115) which describes the content of the given image. CLIPReward uses CLIP as a reward function and a simple finetuning strategy of the CLIP text encoder to impove grammar that does not require extra text annotation, thus towards to more descriptive and distinctive caption generation. This is an adaptation from [j-min/CLIP-Caption-Reward](https://github.com/j-min/CLIP-Caption-Reward).
## Code Example
Load an image from path './animals.jpg' to generate the caption.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./animals.jpg') \
.image_decode() \
.image_captioning.clip_caption_reward(model_name='clipRN50_clips_grammar') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./animals.jpg') \
.image_decode['path', 'img']() \
.image_captioning.clip_caption_reward['img', 'text'](model_name='clipRN50_clips_grammar') \
.select['img', 'text']() \
.show()
```
## Factory Constructor
Create the operator via the following factory method
***clip_caption_reward(model_name)***
**Parameters:**
***model_name:*** *str*
The model name of BLIP. Supported model names:
- clipRN50_clips_grammar
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption.
**Parameters:**
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
The image to generate embedding.
**Returns:** *str*
The caption generated by model.