# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import pathlib import json from pathlib import Path from PIL import Image import numpy as np import torch from torch import nn from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from torchvision.transforms.functional import InterpolationMode from timm.models.vision_transformer import resize_pos_embed from towhee.types.image_utils import to_pil from towhee.types.arg import arg, to_image_color from towhee.operator.base import NNOperator, OperatorFlag class ClipCaptionReward(NNOperator): """ BLIP multi-modal embedding operator """ def __init__(self, model_name: str): super().__init__() sys.path.append(str(Path(__file__).parent)) from utils import opts from transformer_model import TransformerModel from captioning.models.model_utils import decode_sequence self.decode_sequence = decode_sequence import mclip sys.path.pop() path = pathlib.Path(__file__).parent cfg = self._configs()[model_name] config = str(path) + cfg['config'] opt = opts.parse_opt(parse=False, cfg=(config)) dict_json = json.load(open("{}/data/cocotalk.json".format(path))) ix_to_word = dict_json["ix_to_word"] self.device = "cuda" if torch.cuda.is_available() else "cpu" clip_model, clip_transform = mclip.load("RN50", jit=False, device=self.device) self.clip_model = clip_model self.clip_transform = clip_transform vocab_size = len(ix_to_word) seq_length = 1 opt.vocab_size = vocab_size opt.seq_length = seq_length opt.batch_size = 1 opt.vocab = ix_to_word num_patches = 196 # 600 * 1000 // 32 // 32 pos_embed = nn.Parameter( torch.zeros( 1, num_patches + 1, clip_model.visual.attnpool.positional_embedding.shape[-1], device=self.device, ), ) pos_embed.weight = resize_pos_embed( clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed ) self.clip_model.visual.attnpool.positional_embedding = pos_embed ckpt_path = str(path) + cfg['weights'] raw_state_dict = torch.load(ckpt_path, map_location=torch.device('cpu')) self.model = TransformerModel(opt) self.model.load_state_dict(raw_state_dict) self.image_mean = ( torch.Tensor([0.48145466, 0.4578275, 0.40821073]) .to(self.device) .reshape(3, 1, 1) ) self.image_std = ( torch.Tensor([0.26862954, 0.26130258, 0.27577711]) .to(self.device) .reshape(3, 1, 1) ) self._preprocess = Compose( [ Resize((448, 448), interpolation= InterpolationMode.BILINEAR), CenterCrop((448, 448)), ToTensor(), ] ) self.eval_kwargs = {} self.eval_kwargs.update(vars(opt)) @arg(1, to_image_color('RGB')) def inference_single_data(self, data): text = self._inference_from_image(data) return text def _inference_from_image(self, img): img = to_pil(img) img = self._preprocess(img) img = torch.tensor(np.stack([img])).to(self.device) img -= self.image_mean img /= self.image_std tmp_att, tmp_fc = self.clip_model.encode_image(img) tmp_att = tmp_att[0].permute(1, 2, 0) att_feat = tmp_att with torch.no_grad(): fc_feats = torch.zeros((1, 0)).to(self.device) att_feats = att_feat.view(1, 196, 2048).float().to(self.device) att_masks = None # forward the model to also get generated samples for each image # Only leave one feature for each image, in case duplicate sample tmp_eval_kwargs = self.eval_kwargs.copy() tmp_eval_kwargs.update({"sample_n": 1}) seq, seq_logprobs = self.model( fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode="sample" ) seq = seq.data sents = self.decode_sequence(self.model.vocab, seq) return sents[0] def __call__(self, data): results = [] if not isinstance(data, list): data = [data] else: data = data for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results def _configs(self): config = {} config['clipRN50_clips_grammar'] = {} config['clipRN50_clips_grammar']['weights'] = '/weights/clipRN50_clips_grammar-last.pth' config['clipRN50_clips_grammar']['config'] = '/configs/phase2/clipRN50_clips_grammar.yml' return config