# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F #from . import utils #utils.repeat_tensors from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def repeat_tensors(n, x): """ For a tensor of size Bx..., we repeat it n times, and make it Bnx... For collections, do nested repeat """ if torch.is_tensor(x): x = x.unsqueeze(1) # Bx1x... x = x.expand(-1, n, *([-1]*len(x.shape[2:]))) # Bxnx... x = x.reshape(x.shape[0]*n, *x.shape[2:]) # Bnx... elif type(x) is list or type(x) is tuple: x = [repeat_tensors(n, _) for _ in x] return x def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) # tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() return att_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, seq, att_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, att_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = (seq[:,t-1] != self.pad_idx) & (seq[:,t-1] != self.eos_idx) it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1)