logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

105 lines
3.4 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib
from torch import nn
from timm.models.vision_transformer import resize_pos_embed
from towhee.types.image_utils import to_pil
class ClipCaptionReward(NNOperator):
"""
BLIP multi-modal embedding operator
"""
def __init__(self, model_name: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
from utils import opts
import clip
opt = opts.parse_opt(parse=False, cfg=cfg)
path = pathlib.Path(__file__).parent
dict_json = json.load(open("{}/data/cocotalk.json".format(path)))
ix_to_word = dict_json["ix_to_word"]
self.device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, clip_transform = clip.load("RN50", jit=False, device=self.device)
self.clip_model = clip_model
self.clip_transform = clip_transform
vocab_size = len(ix_to_word)
seq_length = 1
opt.vocab_size = vocab_size
opt.seq_length = seq_length
opt.batch_size = 1
opt.vocab = ix_to_word
num_patches = 196 # 600 * 1000 // 32 // 32
pos_embed = nn.Parameter(
torch.zeros(
1,
num_patches + 1,
clip_model.visual.attnpool.positional_embedding.shape[-1],
device=self.device,
),
)
pos_embed.weight = resize_pos_embed(
clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed
)
self.clip_model.visual.attnpool.positional_embedding = pos_embed
self.model = TransformerModel(opt)
self.image_mean = (
torch.Tensor([0.48145466, 0.4578275, 0.40821073])
.to(self.device)
.reshape(3, 1, 1)
)
self.image_std = (
torch.Tensor([0.26862954, 0.26130258, 0.27577711])
.to(self.device)
.reshape(3, 1, 1)
)
@arg(1, to_image_color('RGB'))
def inference_single_data(self, data):
text = self._inference_from_image(data)
return text
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = to_pil(img)
img = self._preprocess(img)
self._inference_from_image(img)
img -= self.image_mean
img /= self.image_std
tmp_att, tmp_fc = self.clip_model.encode_image(img)
tmp_att = tmp_att[0].permute(1, 2, 0)
att_feat = tmp_att
return att_feat
def __call__(self, data):
if not isinstance(data, list):
data = [data]
else:
data = data
for single_data in data:
result = self.inference_single_data(single_data)
results.append(result)
if len(data) == 1:
return results[0]
else:
return results