logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

464 lines
23 KiB

# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model
# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm
# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.
# UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
#from . import utils
#utils.repeat_tensors
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from .CaptionModel import CaptionModel
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['the']
def repeat_tensors(n, x):
"""
For a tensor of size Bx..., we repeat it n times, and make it Bnx...
For collections, do nested repeat
"""
if torch.is_tensor(x):
x = x.unsqueeze(1) # Bx1x...
x = x.expand(-1, n, *([-1]*len(x.shape[2:]))) # Bxnx...
x = x.reshape(x.shape[0]*n, *x.shape[2:]) # Bnx...
elif type(x) is list or type(x) is tuple:
x = [repeat_tensors(n, _) for _ in x]
return x
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
# tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, att_feats, att_masks):
if att_masks is not None:
packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
else:
return module(att_feats)
class AttModel(CaptionModel):
def __init__(self, opt):
super(AttModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.bos_idx = getattr(opt, 'bos_idx', 0)
self.eos_idx = getattr(opt, 'eos_idx', 0)
self.pad_idx = getattr(opt, 'pad_idx', 0)
self.use_bn = getattr(opt, 'use_bn', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ())))
self.logit_layers = getattr(opt, 'logit_layers', 1)
if self.logit_layers == 1:
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
else:
self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)]
self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)]))
self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)
# For remove bad endding
self.vocab = opt.vocab
self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
def init_hidden(self, bsz):
weight = self.logit.weight \
if hasattr(self.logit, "weight") \
else self.logit[0].weight
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
# embed fc and att feats
fc_feats = self.fc_embed(fc_feats)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
# Project the attention feats first to reduce memory and computation comsumptions.
p_att_feats = self.ctx2att(att_feats)
return fc_feats, att_feats, p_att_feats, att_masks
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
if seq.ndim == 3: # B * seq_per_img * seq_len
seq = seq.reshape(-1, seq.shape[2])
seq_per_img = seq.shape[0] // batch_size
state = self.init_hidden(batch_size*seq_per_img)
outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1)
# Prepare the features
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
# pp_att_feats is used for attention, we cache it in advance to reduce computation cost
if seq_per_img > 1:
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(seq_per_img,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
for i in range(seq.size(1)):
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i].data.clone()
prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i].clone()
# break if all the sequences end
if i >= 1 and seq[:, i].sum() == 0:
break
output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
outputs[:, i] = output
return outputs
def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
if output_logsoftmax:
logprobs = F.log_softmax(self.logit(output), dim=1)
else:
logprobs = self.logit(output)
return logprobs, state
def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = repeat_tensors(beam_size,
[p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None]
)
for t in range(1):
if t == 0: # input <bos>
it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state)
self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
if sample_n == beam_size:
for _n in range(sample_n):
seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
else:
seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
group_size = opt.get('group_size', 1)
sample_n = opt.get('sample_n', 10)
# when sample_n == beam_size then each beam is a sample.
assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
state = self.init_hidden(batch_size)
# first step, feed bos
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(beam_size,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt)
for k in range(batch_size):
if sample_n == beam_size:
for _n in range(sample_n):
seq_len = self.done_beams[k][_n]['seq'].shape[0]
seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
else:
seq_len = self.done_beams[k][0]['seq'].shape[0]
seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq, seqLogprobs
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
sample_n = int(opt.get('sample_n', 1))
group_size = opt.get('group_size', 1)
output_logsoftmax = opt.get('output_logsoftmax', 1)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 0)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self._sample_beam(fc_feats, att_feats, att_masks, opt)
if group_size > 1:
return self._diverse_sample(fc_feats, att_feats, att_masks, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size*sample_n)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
if sample_n > 1:
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = repeat_tensors(sample_n,
[p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
)
trigrams = [] # will be a list of batch_size dictionaries
seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long)
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax)
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
if remove_bad_endings and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# Make it impossible to generate bad_endings
tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
logprobs = logprobs + tmp
# Mess with trigrams
# Copy from https://github.com/lukemelas/image-paragraph-captioning
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.seq_length: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
unfinished = unfinished & (it != self.eos_idx)
seq[:,t] = it
seqLogprobs[:,t] = logprobs
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
return seq, seqLogprobs
def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
group_size = opt.get('group_size', 1)
diversity_lambda = opt.get('diversity_lambda', 0.5)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 0)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries
seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)]
seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)]
state_table = [self.init_hidden(batch_size) for _ in range(group_size)]
for tt in range(self.seq_length + group_size):
for divm in range(group_size):
t = tt - divm
seq = seq_table[divm]
seqLogprobs = seqLogprobs_table[divm]
trigrams = trigrams_table[divm]
if t >= 0 and t <= self.seq_length-1:
if t == 0: # input <bos>
it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
else:
it = seq[:, t-1] # changed
logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed
logprobs = F.log_softmax(logprobs / temperature, dim=-1)
# Add diversity
if divm > 0:
unaug_logprobs = logprobs.clone()
for prev_choice in range(divm):
prev_decisions = seq_table[prev_choice][:, t]
logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
if remove_bad_endings and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# Impossible to generate remove_bad_endings
tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
logprobs = logprobs + tmp
# Mess with trigrams
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)
# stop when all finished
if t == 0:
unfinished = it != self.eos_idx
else:
unfinished = (seq[:,t-1] != self.pad_idx) & (seq[:,t-1] != self.eos_idx)
it[~unfinished] = self.pad_idx
unfinished = unfinished & (it != self.eos_idx) # changed
seq[:,t] = it
seqLogprobs[:,t] = sampleLogprobs.view(-1)
return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1)