From dd32a1fe7729a51a007fae1cfc75e7d9c031c4bc Mon Sep 17 00:00:00 2001 From: wxywb Date: Thu, 2 Feb 2023 06:41:25 +0000 Subject: [PATCH] update the readme. Signed-off-by: wxywb --- README.md | 26 +++++++++----------------- clipcap.py | 4 ++-- 2 files changed, 11 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index 3718aab..b9d6611 100644 --- a/README.md +++ b/README.md @@ -19,28 +19,20 @@ This operator generates the caption with [ClipCap](https://arxiv.org/abs/2111.09 Load an image from path './hulk.jpg' to generate the caption. - *Write the pipeline in simplified style*: +*Write a pipeline with explicit inputs/outputs name specifications:* ```python -import towhee +from towhee.dc2 import pipe, ops, DataCollection -towhee.glob('./hulk.jpg') \ - .image_decode() \ - .image_captioning.clipcap(model_name='clipcap_coco') \ - .show() -``` -result1 - -*Write a same pipeline with explicit inputs/outputs name specifications:* +p = ( + pipe.input('url') + .map('url', 'img', ops.image_decode.cv2_rgb()) + .map('img', 'text', ops.image_captioning.clipcap(model_name='clipcap_coco')) + .output('img', 'text') +) -```python -import towhee +DataCollection(p('./image.jpg')).show() -towhee.glob['path']('./hulk.jpg') \ - .image_decode['path', 'img']() \ - .image_captioning.clipcap['img', 'text'](model_name='clipcap_coco') \ - .select['img', 'text']() \ - .show() ``` result2 diff --git a/clipcap.py b/clipcap.py index 268be67..cd93dec 100644 --- a/clipcap.py +++ b/clipcap.py @@ -55,8 +55,8 @@ class ClipCap(NNOperator): self.model = ClipCaptionModel(self.prefix_length) model_path = os.path.dirname(__file__) + '/weights/' + config['weights'] self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) + self.model.to(self.device) self.model = self.model.eval() - @arg(1, to_image_color('RGB')) def inference_single_data(self, data): @@ -85,7 +85,7 @@ class ClipCap(NNOperator): @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) - clip_feat = self.clip_model.encode_image(img) + clip_feat = self.clip_model.encode_image(img).float() self.prefix_length = 10 prefix_embed = self.model.clip_project(clip_feat).reshape(1, self.prefix_length, -1)