# Image Captioning with ClipCap
*author: David Wang*
## Description
This operator generates the caption with [ClipCap](https://arxiv.org/abs/2111.09734) which describes the content of the given image. ClipCap uses CLIP encoding as a prefix to the caption, by employing a simple mapping network, and then fine-tunes a language model to generate the image captions. This is an adaptation from [rmokady/CLIP_prefix_caption](https://github.com/rmokady/CLIP_prefix_caption).
## Code Example
Load an image from path './hulk.jpg' to generate the caption.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./hulk.jpg') \
.image_decode() \
.image_captioning.clipcap(model_name='clipcap_coco') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./hulk.jpg') \
.image_decode['path', 'img']() \
.image_captioning.clipcap['img', 'text'](model_name='clipcap_coco') \
.select['img', 'text']() \
.show()
```
## Factory Constructor
Create the operator via the following factory method
***clipcap(model_name)***
**Parameters:**
***model_name:*** *str*
The model name of ClipCap. Supported model names:
- clipcap_coco
- clipcap_conceptual
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
The image to generate embedding.
**Returns:** *str*
The caption generated by model.