# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from pathlib import Path from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee import register from towhee.models import clip class ClipCap(NNOperator): """ ClipCap image captioning operator """ def __init__(self, model_name: str): super().__init__(): sys.path.append(str(Path(__file__).parent)) from models.clipcap import ClipCaptionModel config = self._configs()[model_name] self.clip_tfms = self.tfms = transforms.Compose([ transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) clip_model_type = 'clip_vit_b32' self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True) self.model = ClipCaptionModel(prefix = 10) model_path = os.path.dirname(__file__) + '/weights/' + config['weights'] self.model.load_state_dict(torch.load(model_path, map_location=CPU)) self.model = model.eval() @arg(1, to_image_color('RGB')) def __call__(self, data:): vec = self._inference_from_image(data) return vec def _preprocess(self, img): img = to_pil(img) processed_img = self.self.clip_tfms(img).unsqueeze(0).to(self.device) return processed_img @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) clip_feat = self.clip_model.encode_image(image) prefix_length = 10 prefix_embed = self.model.clip_project(clip_feat).reshape(1, prefix_length, -1) generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] return generated_text_prefix def _configs(self): config = {} config['clipcap_coco'] = {} config['clipcap_coco']['weights'] = 'weights/coco_weights.pt' config['clipcap_conceptual'] = {} config['clipcap_conceptual']['weights'] = 'weights/conceptual_weights.pt' return config