import torch import torch.nn.functional as nnf #@title Imports from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup import clip import os from typing import Tuple, List, Union, Optional from torch import nn import numpy as np import torch import torch.nn.functional as nnf import sys T = torch.Tensor D = torch.device is_gpu = False def get_device(device_id: int) -> D: if not torch.cuda.is_available(): return CPU device_id = min(torch.cuda.device_count() - 1, device_id) return torch.device(f'cuda:{device_id}') class MLP(nn.Module): def forward(self, x: T) -> T: return self.model(x) def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): super(MLP, self).__init__() layers = [] for i in range(len(sizes) -1): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) if i < len(sizes) - 2: layers.append(act()) self.model = nn.Sequential(*layers) class ClipCaptionModel(nn.Module): #@functools.lru_cache #FIXME def get_dummy_token(self, batch_size: int, device: D) -> T: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): embedding_text = self.gpt.transformer.wte(tokens) prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) #print(embedding_text.size()) #torch.Size([5, 67, 768]) #print(prefix_projections.size()) #torch.Size([5, 1, 768]) embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) labels = torch.cat((dummy_token, tokens), dim=1) out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) return out def __init__(self, prefix_length: int, prefix_size: int = 512): super(ClipCaptionModel, self).__init__() self.prefix_length = prefix_length self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] if prefix_length > 10: # not enough memory self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) else: self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) class ClipCaptionPrefix(ClipCaptionModel): def parameters(self, recurse: bool = True): return self.clip_project.parameters() def train(self, mode: bool = True): super(ClipCaptionPrefix, self).train(mode) self.gpt.eval() return self def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, entry_length=67, temperature=1., stop_token: str = '.'): model.eval() stop_token_index = tokenizer.encode(stop_token)[0] tokens = None scores = None device = next(model.parameters()).device seq_lengths = torch.ones(beam_size, device=device) is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) with torch.no_grad(): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) logits = logits.softmax(-1).log() if scores is None: scores, next_tokens = logits.topk(beam_size, -1) generated = generated.expand(beam_size, *generated.shape[1:]) next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: tokens = next_tokens else: tokens = tokens.expand(beam_size, *tokens.shape[1:]) tokens = torch.cat((tokens, next_tokens), dim=1) else: logits[is_stopped] = -float(np.inf) logits[is_stopped, 0] = 0 scores_sum = scores[:, None] + logits seq_lengths[~is_stopped] += 1 scores_sum_average = scores_sum / seq_lengths[:, None] scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) next_tokens_source = next_tokens // scores_sum.shape[1] seq_lengths = seq_lengths[next_tokens_source] next_tokens = next_tokens % scores_sum.shape[1] next_tokens = next_tokens.unsqueeze(1) tokens = tokens[next_tokens_source] tokens = torch.cat((tokens, next_tokens), dim=1) generated = generated[next_tokens_source] scores = scores_sum_average * seq_lengths is_stopped = is_stopped[next_tokens_source] next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) generated = torch.cat((generated, next_token_embed), dim=1) is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() if is_stopped.all(): break scores = scores / seq_lengths output_list = tokens.cpu().numpy() output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] order = scores.argsort(descending=True) output_texts = [output_texts[i] for i in order] return output_texts