# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os from pathlib import Path import torch from torchvision import transforms from transformers import GPT2Tokenizer from towhee.types.arg import arg, to_image_color from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee import register from towhee.models import clip class ClipCap(NNOperator): """ ClipCap image captioning operator """ def __init__(self, model_name: str): super().__init__() sys.path.append(str(Path(__file__).parent)) from models.clipcap import ClipCaptionModel, generate_beam self.device = "cuda" if torch.cuda.is_available() else "cpu" self.generate_beam = generate_beam self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2") config = self._configs()[model_name] self.prefix_length = 10 self.clip_tfms = self.tfms = transforms.Compose([ transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) clip_model_type = 'clip_vit_b32' self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True) self.model = ClipCaptionModel(self.prefix_length) model_path = os.path.dirname(__file__) + '/weights/' + config['weights'] self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) self.model = self.model.eval() @arg(1, to_image_color('RGB')) def inference_single_data(self, data): text = self._inference_from_image(data) return text def _preprocess(self, img): img = to_pil(img) processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device) return processed_img def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) clip_feat = self.clip_model.encode_image(img) self.prefix_length = 10 prefix_embed = self.model.clip_project(clip_feat).reshape(1, self.prefix_length, -1) generated_text_prefix = self.generate_beam(self.model, self.tokenizer, embed=prefix_embed)[0] return generated_text_prefix def _configs(self): config = {} config['clipcap_coco'] = {} config['clipcap_coco']['weights'] = 'coco_weights.pt' config['clipcap_conceptual'] = {} config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt' return config