clipcap
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
103 lines
3.6 KiB
103 lines
3.6 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
from transformers import GPT2Tokenizer
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
from towhee.types.image_utils import to_pil
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
from towhee import register
|
|
from towhee.models import clip
|
|
|
|
class ClipCap(NNOperator):
|
|
"""
|
|
ClipCap image captioning operator
|
|
"""
|
|
def __init__(self, model_name: str):
|
|
super().__init__()
|
|
sys.path.append(str(Path(__file__).parent))
|
|
from clipcap_model.clipcap import ClipCaptionModel, generate_beam
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.generate_beam = generate_beam
|
|
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
config = self._configs()[model_name]
|
|
|
|
self.prefix_length = 10
|
|
|
|
self.clip_tfms = self.tfms = transforms.Compose([
|
|
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(
|
|
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
|
])
|
|
|
|
clip_model_type = 'clip_vit_b32'
|
|
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True)
|
|
|
|
self.model = ClipCaptionModel(self.prefix_length)
|
|
model_path = os.path.dirname(__file__) + '/weights/' + config['weights']
|
|
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
|
self.model.to(self.device)
|
|
self.model = self.model.eval()
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def inference_single_data(self, data):
|
|
text = self._inference_from_image(data)
|
|
return text
|
|
|
|
def _preprocess(self, img):
|
|
img = to_pil(img)
|
|
processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device)
|
|
return processed_img
|
|
|
|
def __call__(self, data):
|
|
if not isinstance(data, list):
|
|
data = [data]
|
|
else:
|
|
data = data
|
|
results = []
|
|
for single_data in data:
|
|
result = self.inference_single_data(single_data)
|
|
results.append(result)
|
|
if len(data) == 1:
|
|
return results[0]
|
|
else:
|
|
return results
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def _inference_from_image(self, img):
|
|
img = self._preprocess(img)
|
|
clip_feat = self.clip_model.encode_image(img).float()
|
|
|
|
self.prefix_length = 10
|
|
prefix_embed = self.model.clip_project(clip_feat).reshape(1, self.prefix_length, -1)
|
|
|
|
generated_text_prefix = self.generate_beam(self.model, self.tokenizer, embed=prefix_embed)[0]
|
|
return generated_text_prefix
|
|
|
|
def _configs(self):
|
|
config = {}
|
|
config['clipcap_coco'] = {}
|
|
config['clipcap_coco']['weights'] = 'coco_weights.pt'
|
|
config['clipcap_conceptual'] = {}
|
|
config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt'
|
|
return config
|
|
|