logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

103 lines
3.6 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
from pathlib import Path
import torch
from torchvision import transforms
from transformers import GPT2Tokenizer
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
from towhee.models import clip
class ClipCap(NNOperator):
"""
ClipCap image captioning operator
"""
def __init__(self, model_name: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
from clipcap_model.clipcap import ClipCaptionModel, generate_beam
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.generate_beam = generate_beam
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
config = self._configs()[model_name]
self.prefix_length = 10
self.clip_tfms = self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
clip_model_type = 'clip_vit_b32'
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True)
self.model = ClipCaptionModel(self.prefix_length)
model_path = os.path.dirname(__file__) + '/weights/' + config['weights']
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
self.model = self.model.eval()
@arg(1, to_image_color('RGB'))
def inference_single_data(self, data):
text = self._inference_from_image(data)
return text
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device)
return processed_img
def __call__(self, data):
if not isinstance(data, list):
data = [data]
else:
data = data
results = []
for single_data in data:
result = self.inference_single_data(single_data)
results.append(result)
if len(data) == 1:
return results[0]
else:
return results
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
clip_feat = self.clip_model.encode_image(img)
self.prefix_length = 10
prefix_embed = self.model.clip_project(clip_feat).reshape(1, self.prefix_length, -1)
generated_text_prefix = self.generate_beam(self.model, self.tokenizer, embed=prefix_embed)[0]
return generated_text_prefix
def _configs(self):
config = {}
config['clipcap_coco'] = {}
config['clipcap_coco']['weights'] = 'coco_weights.pt'
config['clipcap_conceptual'] = {}
config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt'
return config