# Image Captioning with ExpansionNet v2 *author: David Wang*
## Description This operator generates the caption with [ExpansionNet v2](https://arxiv.org/abs/2208.06551) which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from [jchenghu/ExpansionNet_v2](https://github.com/jchenghu/expansionnet_v2).
## Code Example Load an image from path './image.jpg' to generate the caption. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('url') .map('url', 'img', ops.image_decode.cv2_rgb()) .map('img', 'text', ops.image_captioning.expansionnet_v2(model_name='expansionnet_rf')) .output('img', 'text') ) DataCollection(p('./image.jpg')).show() ``` result2
## Factory Constructor Create the operator via the following factory method ***expansionnet_v2(model_name)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of ExpansionNet v2. Supported model names: - expansionnet_rf
## Interface An image captioning operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The image to generate caption. **Returns:** *str* ​ The caption generated by model.