# Image Captioning with ExpansionNet v2 *author: David Wang*
## Description This operator generates the caption with [ExpansionNet v2](https://arxiv.org/abs/2208.06551) which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from [jchenghu/ExpansionNet_v2](https://github.com/jchenghu/expansionnet_v2).
## Code Example Load an image from path './image.jpg' to generate the caption. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./image.jpg') \ .image_decode() \ .image_captioning.expansionnet_v2(model_name='expansionnet_rf') \ .show() ``` result1 *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./image.jpg') \ .image_decode['path', 'img']() \ .image_captioning.expansionnet_v2['img', 'text'](model_name='expansionnet_rf') \ .select['img', 'text']() \ .show() ``` result2
## Factory Constructor Create the operator via the following factory method ***expansionnet_v2(model_name)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of ExpansionNet v2. Supported model names: - expansionnet_rf
## Interface An image captioning operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The image to generate caption. **Returns:** *str* ​ The caption generated by model.