# Image Captioning with ExpansionNet v2
*author: David Wang*
## Description
This operator generates the caption with [ExpansionNet v2](https://arxiv.org/abs/2208.06551) which describes the content of the given image. ExpansionNet v2 introduces the Block Static Expansion which distributes and processes the input over a heterogeneous and arbitrarily big collection of sequences characterized by a different length compared to the input one. This is an adaptation from [jchenghu/ExpansionNet_v2](https://github.com/jchenghu/expansionnet_v2).
## Code Example
Load an image from path './image.jpg' to generate the caption.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./image.jpg') \
.image_decode() \
.image_captioning.expansionnet_v2(model_name='expansionnet_rf') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./image.jpg') \
.image_decode['path', 'img']() \
.image_captioning.expansionnet_v2['img', 'text'](model_name='expansionnet_rf') \
.select['img', 'text']() \
.show()
```
## Factory Constructor
Create the operator via the following factory method
***expansionnet_v2(model_name)***
**Parameters:**
***model_name:*** *str*
The model name of ExpansionNet v2. Supported model names:
- expansionnet_rf
## Interface
An image captioning operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
The image to generate caption.
**Returns:** *str*
The caption generated by model.