import torch from models.layers import EmbeddingLayer, EncoderLayer, DecoderLayer from utils.masking import create_pad_mask, create_no_peak_and_pad_mask from models.captioning_model import CaptioningModel import torch.nn as nn class ExpansionNet_v2(CaptioningModel): def __init__(self, d_model, N_enc, N_dec, ff, num_heads, num_exp_enc_list, num_exp_dec, output_word2idx, output_idx2word, max_seq_len, drop_args, img_feature_dim=2048, rank=0): super().__init__() self.output_word2idx = output_word2idx self.output_idx2word = output_idx2word self.max_seq_len = max_seq_len self.num_exp_dec = num_exp_dec self.num_exp_enc_list = num_exp_enc_list self.N_enc = N_enc self.N_dec = N_dec self.d_model = d_model self.encoders = nn.ModuleList([EncoderLayer(d_model, ff, num_exp_enc_list, drop_args.enc) for _ in range(N_enc)]) self.decoders = nn.ModuleList([DecoderLayer(d_model, num_heads, ff, num_exp_dec, drop_args.dec) for _ in range(N_dec)]) self.input_embedder_dropout = nn.Dropout(drop_args.enc_input) self.input_linear = torch.nn.Linear(img_feature_dim, d_model) self.vocab_linear = torch.nn.Linear(d_model, len(output_word2idx)) self.log_softmax = nn.LogSoftmax(dim=-1) self.out_enc_dropout = nn.Dropout(drop_args.other) self.out_dec_dropout = nn.Dropout(drop_args.other) self.out_embedder = EmbeddingLayer(len(output_word2idx), d_model, drop_args.dec_input) self.pos_encoder = nn.Embedding(max_seq_len, d_model) self.enc_reduce_group = nn.Linear(d_model * self.N_enc, d_model) self.enc_reduce_norm = nn.LayerNorm(d_model) self.dec_reduce_group = nn.Linear(d_model * self.N_dec, d_model) self.dec_reduce_norm = nn.LayerNorm(d_model) for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) self.trained_steps = 0 self.rank = rank def forward_enc(self, enc_input, enc_input_num_pads): x = self.input_embedder_dropout(self.input_linear(enc_input)) max_num_enc = sum(self.num_exp_enc_list) pos_x = torch.arange(max_num_enc).unsqueeze(0).expand(enc_input.size(0), max_num_enc).to(self.rank) pad_mask = create_pad_mask(mask_size=(enc_input.size(0), max_num_enc, enc_input.size(1)), pad_along_row_input=[0] * enc_input.size(0), pad_along_column_input=enc_input_num_pads, rank=self.rank) x_list = [] for i in range(self.N_enc): x = self.encoders[i](x=x, n_indexes=pos_x, mask=pad_mask) x_list.append(x) x_list = torch.cat(x_list, dim=-1) x = x + self.out_enc_dropout(self.enc_reduce_group(x_list)) x = self.enc_reduce_norm(x) return x def forward_dec(self, cross_input, enc_input_num_pads, dec_input, dec_input_num_pads, apply_log_softmax=False): no_peak_and_pad_mask = create_no_peak_and_pad_mask( mask_size=(dec_input.size(0), dec_input.size(1), dec_input.size(1)), num_pads=dec_input_num_pads, rank=self.rank) pad_mask = create_pad_mask(mask_size=(dec_input.size(0), dec_input.size(1), cross_input.size(1)), pad_along_row_input=dec_input_num_pads, pad_along_column_input=enc_input_num_pads, rank=self.rank) y = self.out_embedder(dec_input) pos_x = torch.arange(self.num_exp_dec).unsqueeze(0).expand(dec_input.size(0), self.num_exp_dec).to(self.rank) pos_y = torch.arange(dec_input.size(1)).unsqueeze(0).expand(dec_input.size(0), dec_input.size(1)).to(self.rank) y = y + self.pos_encoder(pos_y) y_list = [] for i in range(self.N_dec): y = self.decoders[i](x=y, n_indexes=pos_x, cross_connection_x=cross_input, input_attention_mask=no_peak_and_pad_mask, cross_attention_mask=pad_mask) y_list.append(y) y_list = torch.cat(y_list, dim=-1) y = y + self.out_dec_dropout(self.dec_reduce_group(y_list)) y = self.dec_reduce_norm(y) y = self.vocab_linear(y) if apply_log_softmax: y = self.log_softmax(y) return y