magic
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
147 lines
6.2 KiB
147 lines
6.2 KiB
2 years ago
|
import torch
|
||
|
import requests
|
||
|
from torch import nn
|
||
|
from PIL import Image
|
||
|
|
||
|
class CLIP(nn.Module):
|
||
|
def __init__(self, model_name):
|
||
|
super(CLIP, self).__init__()
|
||
|
# model name: e.g. openai/clip-vit-base-patch32
|
||
|
print ('Initializing CLIP model...')
|
||
|
from transformers import CLIPProcessor, CLIPModel
|
||
|
self.model = CLIPModel.from_pretrained(model_name)
|
||
|
self.model.eval()
|
||
|
self.processor = CLIPProcessor.from_pretrained(model_name)
|
||
|
from transformers import CLIPTokenizer
|
||
|
self.tokenizer = CLIPTokenizer.from_pretrained(model_name)
|
||
|
self.cuda_has_been_checked = False
|
||
|
print ('CLIP model initialized.')
|
||
|
|
||
|
def check_cuda(self):
|
||
|
self.cuda_available = next(self.model.parameters()).is_cuda
|
||
|
self.device = next(self.model.parameters()).get_device()
|
||
|
if self.cuda_available:
|
||
|
print ('Cuda is available.')
|
||
|
print ('Device is {}'.format(self.device))
|
||
|
else:
|
||
|
print ('Cuda is not available.')
|
||
|
print ('Device is {}'.format(self.device))
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def compute_image_representation_from_image_path(self, image_path):
|
||
|
if not self.cuda_has_been_checked:
|
||
|
self.check_cuda()
|
||
|
self.cuda_has_been_checked = True
|
||
|
else:
|
||
|
pass
|
||
|
# image_path: the path of the image
|
||
|
image = Image.open(image_path)
|
||
|
inputs = self.processor(images=image, return_tensors="pt")
|
||
|
pixel_values = inputs['pixel_values']
|
||
|
if self.cuda_available:
|
||
|
pixel_values = pixel_values.cuda(self.device)
|
||
|
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
||
|
image_embeds = visual_outputs[1]
|
||
|
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
||
|
return image_embeds
|
||
|
|
||
|
def compute_image_representation_from_image_instance(self, image):
|
||
|
if not self.cuda_has_been_checked:
|
||
|
self.check_cuda()
|
||
|
self.cuda_has_been_checked = True
|
||
|
else:
|
||
|
pass
|
||
|
# image_path: the path of the image
|
||
|
inputs = self.processor(images=image, return_tensors="pt")
|
||
|
pixel_values = inputs['pixel_values']
|
||
|
if self.cuda_available:
|
||
|
pixel_values = pixel_values.cuda(self.device)
|
||
|
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
||
|
image_embeds = visual_outputs[1]
|
||
|
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
||
|
return image_embeds
|
||
|
|
||
|
def compute_text_representation(self, text_list):
|
||
|
if not self.cuda_has_been_checked:
|
||
|
self.check_cuda()
|
||
|
self.cuda_has_been_checked = True
|
||
|
else:
|
||
|
pass
|
||
|
# text_list: a list of text
|
||
|
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt",
|
||
|
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True)
|
||
|
# self.tokenizer.max_len_single_sentence + 2 = 77
|
||
|
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask']
|
||
|
if self.cuda_available:
|
||
|
input_ids = input_ids.cuda(self.device)
|
||
|
attention_mask = attention_mask.cuda(self.device)
|
||
|
text_outputs = self.model.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask
|
||
|
)
|
||
|
text_embeds = text_outputs[1]
|
||
|
text_embeds = self.model.text_projection(text_embeds)
|
||
|
return text_embeds
|
||
|
|
||
|
def compute_image_text_similarity_via_embeddings(self, image_embeds, text_embeds):
|
||
|
'''
|
||
|
image_embeds: 1 x embed_dim
|
||
|
text_embeds: len(text_list) x embed_dim
|
||
|
'''
|
||
|
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
||
|
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
||
|
logit_scale = self.model.logit_scale.exp()
|
||
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
||
|
logits_per_image = logits_per_text.T
|
||
|
return logits_per_image.softmax(dim=1) # 1 x len(text_list)
|
||
|
|
||
|
def compute_image_text_similarity_via_raw_text(self, image_embeds, text_list):
|
||
|
text_embeds = self.compute_text_representation(text_list)
|
||
|
return self.compute_image_text_similarity_via_embeddings(image_embeds, text_embeds)
|
||
|
|
||
|
### -------------------- functions for building index ---------------------- ###
|
||
|
def compute_batch_index_image_features(self, image_list):
|
||
|
'''
|
||
|
# list of image instances
|
||
|
'''
|
||
|
if not self.cuda_has_been_checked:
|
||
|
self.check_cuda()
|
||
|
self.cuda_has_been_checked = True
|
||
|
else:
|
||
|
pass
|
||
|
# image_path: the path of the image
|
||
|
inputs = self.processor(images=image_list, return_tensors="pt")
|
||
|
pixel_values = inputs['pixel_values']
|
||
|
if self.cuda_available:
|
||
|
pixel_values = pixel_values.cuda(self.device)
|
||
|
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
||
|
image_embeds = visual_outputs[1]
|
||
|
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
||
|
return image_embeds # len(image_list) x embed_dim
|
||
|
|
||
|
def compute_batch_index_text_representation(self, text_list):
|
||
|
if not self.cuda_has_been_checked:
|
||
|
self.check_cuda()
|
||
|
self.cuda_has_been_checked = True
|
||
|
else:
|
||
|
pass
|
||
|
# text_list: a list of text
|
||
|
#text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt")
|
||
|
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt",
|
||
|
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True)
|
||
|
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask']
|
||
|
if self.cuda_available:
|
||
|
input_ids = input_ids.cuda(self.device)
|
||
|
attention_mask = attention_mask.cuda(self.device)
|
||
|
text_outputs = self.model.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask
|
||
|
)
|
||
|
text_embeds = text_outputs[1]
|
||
|
text_embeds = self.model.text_projection(text_embeds)
|
||
|
return text_embeds
|
||
|
#logit_scale = self.model.logit_scale.exp()
|
||
|
#text_embeds = text_embeds * logit_scale
|
||
|
#return text_embeds
|
||
|
|