magic
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
100 lines
3.2 KiB
100 lines
3.2 KiB
2 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
from re import I
|
||
|
import sys
|
||
|
import os
|
||
|
import pathlib
|
||
|
import pickle
|
||
|
from argparse import Namespace
|
||
|
|
||
|
import torch
|
||
|
import torchvision
|
||
|
from torchvision import transforms
|
||
|
from transformers import GPT2Tokenizer
|
||
|
|
||
|
from towhee.types.arg import arg, to_image_color
|
||
|
from towhee.types.image_utils import to_pil
|
||
|
from towhee.operator.base import NNOperator, OperatorFlag
|
||
|
from towhee import register
|
||
|
from towhee.models import clip
|
||
|
|
||
|
class Magic(NNOperator):
|
||
|
"""
|
||
|
Magic image captioning operator
|
||
|
"""
|
||
|
def __init__(self, model_name: str):
|
||
|
super().__init__()
|
||
|
path = str(pathlib.Path(__file__).parent)
|
||
|
sys.path.append(path)
|
||
|
from clip import CLIP
|
||
|
from simctg import SimCTG
|
||
|
sys.path.pop()
|
||
|
|
||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
# Load Language Model
|
||
|
language_model_name = r'cambridgeltl/magic_mscoco' # or r'/path/to/downloaded/cambridgeltl/magic_mscoco'
|
||
|
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
|
||
|
self.generation_model = SimCTG(language_model_name, sos_token, pad_token).to(self.device)
|
||
|
self.generation_model.eval()
|
||
|
|
||
|
model_name = r"openai/clip-vit-base-patch32" # or r"/path/to/downloaded/openai/clip-vit-base-patch32"
|
||
|
self.clip = CLIP(model_name).to(self.device)
|
||
|
self.clip.eval()
|
||
|
|
||
|
|
||
|
def _preprocess(self, img):
|
||
|
img = to_pil(img)
|
||
|
processed_img = self.transf_1(img)
|
||
|
processed_img = self.transf_2(processed_img)
|
||
|
processed_img = processed_img.to(self.device)
|
||
|
return processed_img
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def inference_single_data(self, data):
|
||
|
text = self._inference_from_image(data)
|
||
|
return text
|
||
|
|
||
|
def __call__(self, data):
|
||
|
if not isinstance(data, list):
|
||
|
data = [data]
|
||
|
else:
|
||
|
data = data
|
||
|
results = []
|
||
|
for single_data in data:
|
||
|
result = self.inference_single_data(single_data)
|
||
|
results.append(result)
|
||
|
if len(data) == 1:
|
||
|
return results[0]
|
||
|
else:
|
||
|
return results
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def _inference_from_image(self, img):
|
||
|
#img = self._preprocess(img).unsqueeze(0)
|
||
|
k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16
|
||
|
eos_token = '<|endoftext|>'
|
||
|
with torch.no_grad():
|
||
|
output = generation_model.magic_search(input_ids, k,
|
||
|
alpha, decoding_len, beta, image_instance, clip, 60)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def _configs(self):
|
||
|
config = {}
|
||
|
config['expansionnet_rf'] = {}
|
||
|
config['expansionnet_rf']['weights'] = 'rf_model.pth'
|
||
|
return config
|