# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from re import I import sys import os import pathlib import pickle from argparse import Namespace import torch import torchvision from torchvision import transforms from transformers import GPT2Tokenizer from towhee.types.arg import arg, to_image_color from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee import register from towhee.models import clip class Magic(NNOperator): """ Magic image captioning operator """ def __init__(self, model_name: str): super().__init__() path = str(pathlib.Path(__file__).parent) sys.path.append(path) from clip import CLIP from simctg import SimCTG sys.path.pop() self.device = "cuda" if torch.cuda.is_available() else "cpu" # Load Language Model language_model_name = r'cambridgeltl/magic_mscoco' # or r'/path/to/downloaded/cambridgeltl/magic_mscoco' sos_token, pad_token = r'<-start_of_text->', r'<-pad->' self.generation_model = SimCTG(language_model_name, sos_token, pad_token).to(self.device) self.generation_model.eval() model_name = r"openai/clip-vit-base-patch32" # or r"/path/to/downloaded/openai/clip-vit-base-patch32" self.clip = CLIP(model_name).to(self.device) self.clip.eval() def _preprocess(self, img): img = to_pil(img) processed_img = self.transf_1(img) processed_img = self.transf_2(processed_img) processed_img = processed_img.to(self.device) return processed_img @arg(1, to_image_color('RGB')) def inference_single_data(self, data): text = self._inference_from_image(data) return text def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): #img = self._preprocess(img).unsqueeze(0) k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16 eos_token = '<|endoftext|>' with torch.no_grad(): output = generation_model.magic_search(input_ids, k, alpha, decoding_len, beta, image_instance, clip, 60) return out def _configs(self): config = {} config['expansionnet_rf'] = {} config['expansionnet_rf']['weights'] = 'rf_model.pth' return config