diff --git a/README.md b/README.md
index 59fa07f..626d677 100644
--- a/README.md
+++ b/README.md
@@ -1,2 +1,93 @@
-# data2vec-vision
+# Image Embdding with data2vec
+
+*author: David Wang*
+
+
+
+
+
+
+## Description
+
+This operator extracts features for image with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture.
+
+
+
+
+## Code Example
+
+Load an image from path './towhee.jpg' to generate an image embedding.
+
+ *Write the pipeline in simplified style*:
+
+```python
+import towhee
+
+towhee.glob('./towhee.jpg') \
+ .image_decode.cv2() \
+ .image_embedding.data2vec_vision(model_name='facebook/data2vec-vision-base-ft1k') \
+ .show()
+
+```
+
+
+*Write a same pipeline with explicit inputs/outputs name specifications:*
+
+```python
+import towhee
+
+towhee.glob['path']('./towhee.jpg') \
+ .image_decode.cv2['path', 'img']() \
+ .image_embedding.data2vec_vision['img', 'vec'](model_name='facebook/data2vec-vision-base-ft1k') \
+ .select['img', 'vec']() \
+ .show()
+```
+
+
+
+
+
+
+
+## Factory Constructor
+
+Create the operator via the following factory method
+
+***data2vec_vision(model_name='facebook/data2vec-vision-base')***
+
+**Parameters:**
+
+
+ ***model_name***: *str*
+
+The model name in string.
+The default value is "facebook/data2vec-vision-base-ft1k".
+
+Supported model name:
+- facebook/data2vec-vision-base-ft1k
+- facebook/data2vec-vision-large-ft1k
+
+
+
+
+
+## Interface
+
+An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input.
+It uses the pre-trained model specified by model name to generate an image embedding in ndarray.
+
+
+**Parameters:**
+
+ ***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
+
+ The decoded image data in towhee.types.Image (numpy.ndarray).
+
+
+
+**Returns:** *numpy.ndarray*
+
+ The image embedding extracted by model.
+
+
diff --git a/__init__.py b/__init__.py
new file mode 100644
index 0000000..5fd45d1
--- /dev/null
+++ b/__init__.py
@@ -0,0 +1,19 @@
+# Copyright 2021 Zilliz. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from .data2vec_vision import Data2VecVision
+
+
+def data2vec_vision(model_name='facebook/data2vec-vision-base'):
+ return Data2VecVision(model_name)
diff --git a/data2vec_vision.py b/data2vec_vision.py
new file mode 100644
index 0000000..e23b8a9
--- /dev/null
+++ b/data2vec_vision.py
@@ -0,0 +1,37 @@
+# Copyright 2021 Zilliz. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import numpy
+import torch
+import towhee
+
+from PIL import Image as PILImage
+
+from transformers import BeitFeatureExtractor, Data2VecVisionForImageClassification
+from towhee.operator.base import NNOperator
+from towhee.types.arg import arg, to_image_color
+
+class Data2VecVision(NNOperator):
+ def __init__(self, model_name='facebook/data2vec-vision-base'):
+ self.model = Data2VecVisionForImageClassification.from_pretrained(model_name)
+ self.feature_extractor = BeitFeatureExtractor.from_pretrained(model_name)
+
+ @arg(1, to_image_color('RGB'))
+ def __call__(self, img: towhee._types.Image) -> numpy.ndarray:
+ img = PILImage.fromarray(img.astype('uint8'), 'RGB')
+ inputs = self.feature_extractor(img, return_tensors="pt")
+ with torch.no_grad():
+ outputs = self.model.data2vec_vision(**inputs).pooler_output
+
+ return outputs.detach().cpu().numpy().flatten()
+
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..0c49ac4
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,2 @@
+numpy
+transformers>4.19.0
diff --git a/result1.png b/result1.png
new file mode 100644
index 0000000..e246440
Binary files /dev/null and b/result1.png differ
diff --git a/result2.png b/result2.png
new file mode 100644
index 0000000..140e330
Binary files /dev/null and b/result2.png differ