# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy import towhee import sys from pathlib import Path from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register @register(output_schema=['vec']) class Dolg(NNOperator): """ DOLG Embedding Operator """ def __init__(self, img_size, input_dim, hidden_dim, output_dim): super().__init__() sys.path.append(str(Path(__file__).parent)) from dolg_impl import DolgNet self.model = DolgNet(img_size, input_dim, hidden_dim, output_dim) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.tfms = transforms.Compose([transforms.Resize([img_size, img_size]), transforms.Scale([img_size, img_size]), transforms.ToTensor(), normalize]) @arg(1, to_image_color('RGB')) def __call__(self, img: numpy.ndarray): img = self.tfms(to_pil(img)).unsqueeze(0) self.model.eval() features = self.model(img) feature_vector = features.flatten().detach().numpy() return feature_vector