isc
copied
Jael Gu
2 years ago
5 changed files with 220 additions and 1 deletions
@ -1,2 +1,88 @@ |
|||
# isc |
|||
# Image Embedding with ISC |
|||
|
|||
*author: Jael Gu* |
|||
|
|||
<br /> |
|||
|
|||
## Desription |
|||
|
|||
An image embedding operator generates a vector given an image. |
|||
This operator extracts features for image top ranked models from |
|||
[Image Similarity Challenge 2021](https://github.com/facebookresearch/isc2021) - Descriptor Track. |
|||
The default pretrained model weights are from [The 1st Place Solution of ISC21 (Descriptor Track)](https://github.com/lyakaap/ISC21-Descriptor-Track-1st). |
|||
|
|||
<br /> |
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './towhee.jpg' |
|||
and use the pretrained ISC model ('resnet50') to generate an image embedding. |
|||
|
|||
*Write the pipeline in simplified style:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob('./towhee.jpg') \ |
|||
.image_decode() \ |
|||
.image_embedding.isc() \ |
|||
.show() |
|||
``` |
|||
<img src="./result1.png" height="50px"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob['path']('./towhee.jpg') \ |
|||
.image_decode['path', 'img']() \ |
|||
.image_embedding.isc['img', 'vec']() \ |
|||
.select['img', 'vec']() \ |
|||
.show() |
|||
``` |
|||
<img src="./result2.png" height="150px"/> |
|||
|
|||
<br /> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***image_embedding.isc(skip_preprocess=False, device=None)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***skip_preprocess:*** *bool* |
|||
|
|||
The flag to control whether to skip image preprocess. |
|||
The default value is False. |
|||
If set to True, it will skip image preprocessing steps (transforms). |
|||
In this case, input image data must be prepared in advance in order to properly fit the model. |
|||
|
|||
***device:*** *str* |
|||
|
|||
The device to run this operator, defaults to None. |
|||
When it is None, 'cuda' will be used if it is available, otherwise 'cpu' is used. |
|||
|
|||
<br /> |
|||
|
|||
## Interface |
|||
|
|||
An image embedding operator takes a towhee image as input. |
|||
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
|||
|
|||
**Parameters:** |
|||
|
|||
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
|||
|
|||
The decoded image data in numpy.ndarray. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The image embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .isc import Isc |
|||
|
|||
|
|||
def isc(**kwargs): |
|||
return Isc(**kwargs) |
Binary file not shown.
@ -0,0 +1,108 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import logging |
|||
import os |
|||
import numpy |
|||
from typing import Union, List |
|||
from pathlib import Path |
|||
|
|||
import towhee |
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee.types.arg import arg, to_image_color |
|||
from towhee import register |
|||
from towhee.models import isc |
|||
|
|||
import torch |
|||
from torch import nn |
|||
from torchvision import transforms |
|||
from PIL import Image as PILImage |
|||
import timm |
|||
|
|||
import warnings |
|||
|
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class Isc(NNOperator): |
|||
""" |
|||
The operator uses pretrained ISC model to extract features for an image input. |
|||
|
|||
Args: |
|||
skip_preprocess (`bool = False`): |
|||
Whether skip image transforms. |
|||
""" |
|||
|
|||
def __init__(self, timm_backbone: str = 'tf_efficientnetv2_m_in21ft1k', |
|||
skip_preprocess: bool = False, checkpoint_path: str = None, device: str = None) -> None: |
|||
super().__init__() |
|||
if device is None: |
|||
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|||
self.device = device |
|||
self.skip_tfms = skip_preprocess |
|||
if checkpoint_path is None: |
|||
checkpoint_path = os.path.join(str(Path(__file__).parent), 'checkpoints', timm_backbone + '.pth') |
|||
|
|||
backbone = timm.create_model(timm_backbone, features_only=True, pretrained=True) |
|||
self.model = isc.create_model(pretrained=True, checkpoint_path=checkpoint_path, device=self.device, |
|||
backbone=backbone, p=3.0, eval_p=1.0) |
|||
self.model.eval() |
|||
|
|||
self.tfms = transforms.Compose([ |
|||
transforms.Resize((512, 512)), |
|||
transforms.ToTensor(), |
|||
transforms.Normalize(mean=backbone.default_cfg['mean'], |
|||
std=backbone.default_cfg['std']) |
|||
]) |
|||
|
|||
def __call__(self, data: Union[List[towhee._types.Image], towhee._types.Image]): |
|||
if not isinstance(data, list): |
|||
imgs = [data] |
|||
else: |
|||
imgs = data |
|||
img_list = [] |
|||
for img in imgs: |
|||
img = self.convert_img(img) |
|||
img = img if self.skip_tfms else self.tfms(img) |
|||
img_list.append(img) |
|||
inputs = torch.stack(img_list) |
|||
inputs = inputs.to(self.device) |
|||
features = self.model(inputs) |
|||
features = features.to('cpu').flatten(1) |
|||
|
|||
if isinstance(data, list): |
|||
vecs = list(features.detach().numpy()) |
|||
else: |
|||
vecs = features.squeeze(0).detach().numpy() |
|||
return vecs |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def convert_img(self, img: towhee._types.Image): |
|||
img = PILImage.fromarray(img.astype('uint8'), 'RGB') |
|||
return img |
|||
|
|||
|
|||
# if __name__ == '__main__': |
|||
# from towhee import ops |
|||
# |
|||
# path = 'https://github.com/towhee-io/towhee/raw/main/towhee_logo.png' |
|||
# |
|||
# decoder = ops.image_decode.cv2() |
|||
# img = decoder(path) |
|||
# |
|||
# op = Isc() |
|||
# out = op(img) |
|||
# assert out.shape == (256,) |
@ -0,0 +1,3 @@ |
|||
numpy |
|||
torchvision |
|||
timm>=0.5.4 |
Loading…
Reference in new issue