logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

194 lines
6.7 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Union, List
from pathlib import Path
import towhee
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
from towhee.models import isc
# from towhee.dc2 import accelerate
import torch
from torch import nn
from torchvision import transforms
from PIL import Image as PILImage
import timm
import warnings
warnings.filterwarnings('ignore')
log = logging.getLogger('isc_op')
# @accelerate
class Model:
def __init__(self, timm_backbone, checkpoint_path, device):
self.device = device
self.backbone = timm.create_model(timm_backbone, features_only=True, pretrained=False)
self.model = isc.create_model(pretrained=True, checkpoint_path=checkpoint_path, device=self.device,
backbone=self.backbone, p=1.0, eval_p=1.0)
self.model.eval()
def __call__(self, x):
x = x.to(self.device)
return self.model(x)
@register(output_schema=['vec'])
class Isc(NNOperator):
"""
The operator uses pretrained ISC model to extract features for an image input.
Args:
skip_preprocess (`bool = False`):
Whether skip image transforms.
"""
def __init__(self,
timm_backbone: str = 'tf_efficientnetv2_m_in21ft1k',
img_size: int = 512,
checkpoint_path: str = None,
skip_preprocess: bool = False,
device: str = None) -> None:
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
self.skip_tfms = skip_preprocess
self.timm_backbone = timm_backbone
if checkpoint_path is None:
checkpoint_path = os.path.join(str(Path(__file__).parent), 'checkpoints', timm_backbone + '.pth')
self.model = Model(self.timm_backbone, checkpoint_path, self.device)
self.tfms = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=self.backbone.default_cfg['mean'],
std=self.backbone.default_cfg['std'])
])
def __call__(self, data: Union[List[towhee._types.Image], towhee._types.Image]):
if isinstance(data, towhee._types.Image):
imgs = [data]
else:
imgs = data
img_list = []
for img in imgs:
img = self.convert_img(img)
img = img if self.skip_tfms else self.tfms(img)
img_list.append(img)
inputs = torch.stack(img_list)
inputs = inputs.to(self.device)
features = self.model(inputs)
features = features.to('cpu')
if isinstance(data, list):
vecs = list(features.detach().numpy())
else:
vecs = features.squeeze(0).detach().numpy()
return vecs
@property
def _model(self):
return self.model.model
@property
def backbone(self):
backbone = timm.create_model(self.timm_backbone, features_only=True, pretrained=False)
return backbone
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = self.timm_backbone.replace('/', '-')
path = os.path.join(path, name)
if format in ['pytorch', 'torchscript']:
path = path + '.pt'
elif format == 'onnx':
path = path + '.onnx'
else:
raise ValueError(f'Invalid format {format}.')
dummy_input = torch.rand(1, 3, 224, 224)
if format == 'pytorch':
torch.save(self._model, path)
elif format == 'torchscript':
try:
try:
jit_model = torch.jit.script(self._model)
except Exception:
jit_model = torch.jit.trace(self._model, dummy_input, strict=False)
torch.jit.save(jit_model, path)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
try:
torch.onnx.export(self._model,
dummy_input,
path,
input_names=['input_0'],
output_names=['output_0'],
opset_version=14,
dynamic_axes={
'input_0': {0: 'batch_size', 2: 'height', 3: 'width'},
'output_0': {0: 'batch_size', 1: 'dim'}
},
do_constant_folding=True
)
except Exception as e:
log.error(f'Fail to save as onnx: {e}.')
raise RuntimeError(f'Fail to save as onnx: {e}.')
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
return path
@arg(1, to_image_color('RGB'))
def convert_img(self, img: towhee._types.Image):
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
return img
@property
def supported_formats(self):
return ['onnx']
def train(self, training_config=None,
train_dataset=None,
eval_dataset=None,
resume_checkpoint_path=None, **kwargs):
from .train_isc import train_isc
training_args = kwargs.pop('training_args', None)
train_isc(self._model, training_args)
# if __name__ == '__main__':
# from towhee import ops
#
# path = 'https://github.com/towhee-io/towhee/raw/main/towhee_logo.png'
#
# decoder = ops.image_decode.cv2()
# img = decoder(path)
#
# op = Isc()
# out = op(img)
# assert out.shape == (256,)