from towhee import ops from timm_image import TimmImage import torch import numpy import onnx import onnxruntime import os from pathlib import Path import logging import platform import psutil # models = TimmImage.supported_model_names()[:2] models = ['resnet50'] atol = 1e-3 log_path = 'timm_onnx.log' f = open('onnx.csv', 'w+') f.write('model,load_op,save_onnx,check_onnx,run_onnx,accuracy\n') logger = logging.getLogger('timm_onnx') logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh = logging.FileHandler(log_path) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) ch = logging.StreamHandler() ch.setLevel(logging.ERROR) ch.setFormatter(formatter) logger.addHandler(ch) logger.debug(f'machine: {platform.platform()}-{platform.processor()}') logger.debug(f'free/available/total mem: {round(psutil.virtual_memory().free / (1024.0 ** 3))}' f'/{round(psutil.virtual_memory().available / (1024.0 ** 3))}' f'/{round(psutil.virtual_memory().total / (1024.0 ** 3))} GB') logger.debug(f'cpu: {psutil.cpu_count()}') status = None for name in models: logger.info(f'***{name}***') saved_name = name.replace('/', '-') onnx_path = f'saved/onnx/{saved_name}.onnx' try: op = ops.image_embedding.timm(model_name=name, device='cpu').get_op() data = torch.rand((1,) + op.config['input_size']) except Exception as e: print(f'***Please re-download model {name}.***') logger.error(f'Fail to call model: {e}') continue if status: f.write(','.join(status) + '\n') status = [name] + ['fail'] * 5 try: out0 = op(data.cpu().detach().numpy().squeeze(0)) assert out0.shape out1 = op.model(data).detach().numpy() logger.info('OP LOADED.') status[1] = 'success' except Exception as e: logger.error(f'FAIL TO LOAD OP: {e}') continue try: op.save_model(format='onnx') logger.info('ONNX SAVED.') status[2] = 'success' except Exception as e: logger.error(f'FAIL TO SAVE ONNX: {e}') continue try: try: onnx_model = onnx.load(onnx_path) onnx.checker.check_model(onnx_model) except Exception: saved_onnx = onnx.load(onnx_path, load_external_data=False) onnx.checker.check_model(saved_onnx) logger.info('ONNX CHECKED.') status[3] = 'success' except Exception as e: logger.error(f'FAIL TO CHECK ONNX: {e}') pass try: sess = onnxruntime.InferenceSession(onnx_path, providers=onnxruntime.get_available_providers()) out2 = sess.run(None, input_feed={'input_0': data.detach().numpy()}) logger.info('ONNX WORKED.') status[4] = 'success' if numpy.allclose(out1, out2, atol=atol): logger.info('Check accuracy: OK') status[5] = 'success' else: logger.info(f'Check accuracy: atol is larger than {atol}.') except Exception as e: logger.error(f'FAIL TO RUN ONNX: {e}') continue if status: f.write(','.join(status) + '\n') print('Finished.')