import towhee from towhee.dc2 import pipe, ops from towhee import triton_client import onnxruntime import numpy import torch from statistics import mean import time import argparse import os import re import warnings import logging from transformers import logging as t_logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' warnings.filterwarnings("ignore") t_logging.set_verbosity_error() parser = argparse.ArgumentParser() parser.add_argument('--model', required=True, type=str) parser.add_argument('--pipe', action='store_true') parser.add_argument('--triton', action='store_true') parser.add_argument('--onnx', action='store_true') parser.add_argument('--atol', type=float, default=1e-3) parser.add_argument('--num', type=int, default=100) parser.add_argument('--device', type=str, default='cpu') args = parser.parse_args() device_id = 0 if args.device in ['cpu', 'cuda'] else int(args.device[-1]) model_name = args.model # model_name = 'resnet50' # model_name = 'vgg16' # model_name = 'deit3_base_patch16_224' # model_name = 'deit_tiny_patch16_224' # model_name = 'deit_base_distilled_patch16_224' # model_name = 'convnext_base' # model_name = 'vit_base_patch16_224' # model_name = 'tf_efficientnet_b5' p = ( pipe.input('url') .map('url', 'img', ops.image_decode.cv2_rgb()) .map('img', 'vec', ops.image_embedding.timm(model_name=model_name, device=args.device)) .output('vec') ) data = '../towhee.jpeg' out1 = p(data).get()[0] print('Pipe: OK') if args.num and args.pipe: qps = [] for _ in range(10): start = time.time() p.batch([data] * args.num) # for _ in range(args.num): # p(data) end = time.time() q = args.num / (end - start) qps.append(q) print('Pipe qps:', mean(qps)) if args.triton: client = triton_client.Client(url='localhost:8000') out2 = client(data)[0][0] print('Triton: OK') if numpy.allclose(out1, out2, atol=args.atol): print('Check accuracy: OK') else: max_diff = numpy.abs(out1 - out2).max() min_diff = numpy.abs(out1 - out2).min() mean_diff = numpy.abs(out1 - out2).mean() print(f'Check accuracy: atol is larger than {args.atol}.') print(f'Maximum absolute difference is {max_diff}.') print(f'Minimum absolute difference is {min_diff}.') print(f'Mean difference is {mean_diff}.') if args.num: qps = [] for _ in range(10): start = time.time() client.batch([data] * args.num) end = time.time() q = args.num / (end - start) qps.append(q) print('Triton qps:', mean(qps)) if args.onnx: op = ops.image_embedding.timm(model_name=model_name, device='cpu').get_op() decoder = ops.image_decode.cv2_rgb().get_op() # if not os.path.exists('test.onnx'): op.save_model('onnx', 'test.onnx') sess = onnxruntime.InferenceSession('test.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) onnx.set_providers(['CUDAExecutionProvider'], [{'device_id': device_id}]) inputs = decoder(data) inputs = op.convert_img(inputs) inputs = op.tfms(inputs).unsqueeze(0) out3 = sess.run(None, input_feed={'input_0': inputs.cpu().detach().numpy()})[0] op.device = 'cuda' if args.device != 'cpu' else 'cpu' out3 = op.post_proc(torch.from_numpy(out3)).cpu().detach().numpy() print('Onnx: OK') if numpy.allclose(out1, out3, atol=args.atol): print('Check accuracy: OK') else: max_diff = numpy.abs(out1 - out3).max() min_diff = numpy.abs(out1 - out3).min() mean_diff = numpy.abs(out1 - out3).mean() print(f'Check accuracy: atol is larger than {args.atol}.') print(f'Maximum absolute difference is {max_diff}.') print(f'Minimum absolute difference is {min_diff}.') print(f'Mean difference is {mean_diff}.') if args.num: qps = [] for _ in range(10): start = time.time() for _ in range(args.num): inputs = decoder(data) inputs = op.convert_img(inputs) inputs = op.tfms(inputs).unsqueeze(0) outs = sess.run(None, input_feed={'input_0': inputs.cpu().detach().numpy()})[0] outs = op.post_proc(torch.from_numpy(outs)) end = time.time() q = args.num / (end - start) qps.append(q) print('Onnx qps:', mean(qps))