logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

99 lines
2.3 KiB

# Image-Text Retrieval Embdding with ALBEF
*author: David Wang*
<br />
## Description
This operator extracts features for image or text with [ALBEF](https://arxiv.org/abs/2107.07651) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This research introduced a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. This repo is an adaptation from [salesforce / ALBEF](https://github.com/salesforce/ALBEF)
<br />
## Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
*Write the pipeline in simplified style*:
```python
from towhee.dc2 import pipe, ops, DataCollection
img_pipe = (
pipe.input('url')
.map('url', 'img', ops.image_decode.cv2_rgb())
.map('img', 'vec', ops.image_text_embedding.albef(model_name='albef_4m', modality='image'))
.output('img', 'vec')
)
text_pipe = (
pipe.input('text')
.map('text', 'vec', ops.image_text_embedding.albef(model_name='albef_4m', modality='text'))
.output('text', 'vec')
)
DataCollection(img_pipe('./teddy.jpg')).show()
DataCollection(text_pipe('A teddybear on a skateboard in Times Square.')).show()
```
<img src="./tabular1.png" alt="result1" style="height:60px;"/>
<img src="./tabular2.png" alt="result2" style="height:60px;"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***albef(model_name, modality)***
**Parameters:**
***model_name:*** *str*
​ The model name of ALBEF. Supported model names:
- albef_4m
- albef_14m
***modality:*** *str*
​ Which modality(*image* or *text*) is used to generate the embedding.
<br />
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
​ The data (image or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.
2 years ago