diff --git a/README.md b/README.md
index a7ed215..3c702f5 100644
--- a/README.md
+++ b/README.md
@@ -1,2 +1,108 @@
-# albef
+# Image-Text Retrieval Embdding with ALBEF
+
+*author: David Wang*
+
+
+
+
+
+
+## Description
+
+This operator extracts features for image or text with [ALBEF](https://arxiv.org/abs/2103.00020) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This research introduced a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. This repo is an adaptation from [salesforce / ALBEF](https://github.com/salesforce/ALBEF)
+
+
+
+
+
+## Code Example
+
+Load an image from path './teddy.jpg' to generate an image embedding.
+
+Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
+
+ *Write the pipeline in simplified style*:
+
+```python
+import towhee
+
+towhee.glob('./teddy.jpg') \
+ .image_decode() \
+ .image_text_embedding.albef(model_name='albef_4m', modality='image') \
+ .show()
+
+towhee.dc(["A teddybear on a skateboard in Times Square."]) \
+ .image_text_embedding.albef(model_name='albef_4m', modality='text') \
+ .show()
+```
+
+
+
+*Write a same pipeline with explicit inputs/outputs name specifications:*
+
+```python
+import towhee
+
+towhee.glob['path']('./teddy.jpg') \
+ .image_decode['path', 'img']() \
+ .image_text_embedding.albef['img', 'vec'](model_name='albef_4m', modality='image') \
+ .select['img', 'vec']() \
+ .show()
+
+towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
+ .image_text_embedding.albef['text','vec'](model_name='albef_4m', modality='text') \
+ .select['text', 'vec']() \
+ .show()
+```
+
+
+
+
+
+
+
+
+## Factory Constructor
+
+Create the operator via the following factory method
+
+***albef(model_name, modality)***
+
+**Parameters:**
+
+ ***model_name:*** *str*
+
+ The model name of ALBEF. Supported model names:
+- albef_4m
+- albef_14m
+
+
+ ***modality:*** *str*
+
+ Which modality(*image* or *text*) is used to generate the embedding.
+
+
+
+
+
+## Interface
+
+An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
+
+
+**Parameters:**
+
+ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
+
+ The data (image or text based on specified modality) to generate embedding.
+
+
+
+**Returns:** *numpy.ndarray*
+
+ The data embedding extracted by model.
+
+
+
+