logo
Browse Source

init the operator.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
cbef6be26a
  1. 18
      __init__.py
  2. 113
      albef.py
  3. 0
      models/__init__.py
  4. BIN
      models/__pycache__/__init__.cpython-38.pyc
  5. BIN
      models/__pycache__/model_retrieval.cpython-38.pyc
  6. BIN
      models/__pycache__/tokenization_bert.cpython-38.pyc
  7. BIN
      models/__pycache__/vit.cpython-38.pyc
  8. BIN
      models/__pycache__/xbert.cpython-38.pyc
  9. 128
      models/model_nlvr.py
  10. 291
      models/model_pretrain.py
  11. 99
      models/model_pretrain_nlvr.py
  12. 217
      models/model_retrieval.py
  13. 110
      models/model_ve.py
  14. 214
      models/model_vqa.py
  15. 539
      models/tokenization_bert.py
  16. 202
      models/vit.py
  17. 1916
      models/xbert.py
  18. 0
      requirements.txt

18
__init__.py

@ -0,0 +1,18 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .albef import Albef
def albef(model_name: str, modality: str):
return Albef(model_name, modality)

113
albef.py

@ -0,0 +1,113 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
from PIL import Image
import torch
import yaml
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
@register(output_schema=['vec'])
class Albef(NNOperator):
"""
ALBEF multi-modal embedding operator
"""
def prepare_model(checkpoint_path, model):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if 'bert' in key:
encoder_key = key.replace('bert.','')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from ' + checkpoint_path)
return model
def __init__(self, model_name: str, modality: str):
self.modality = modality
config = self._configs()[model_name]
self.device = "cuda" if torch.cuda.is_available() else "cpu"
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
tokenizer = BertTokenizer.from_pretrained(config)
model = ALBEF(config=config, text_encoder=config['text_encoder'], tokenizer=tokenizer)
cfg = yaml.load(open(config['cfg'], 'r'), Loader=yaml.Loader)
checkpoint_path = cfg['ckpt_path']
self.model = self.prepare_model(checkpoint_path, model)
self.test_transform = transforms.Compose([
transforms.Resize((cfg['image_res'],cfg['image_res']),interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
def inference_single_data(self, data):
if self.modality == 'image':
vec = self._inference_from_image(data)
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def __call__(self, data):
if not isinstance(data, list):
data = [data]
else:
data = data
results = []
for single_data in data:
result = self.inference_single_data(single_data)
results.append(result)
if len(data) == 1:
return results[0]
else:
return results
def _inference_from_text(self, text):
tokens = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device)
text_features = self.text_encoder(tokens).logits
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
image = to_pil(img)
image = self.processor(images=image, return_tensors="pt").to(self.device)
image_features = self.clip_model.get_image_features(**image)
return image_features
def _configs(self):
config = {}
config['albef_4m'] = {}
config['albef_4m']['tokenizer'] = 'bert-base-uncased'
config['albef_4m']['text_encoder'] = 'bert-base-uncased'
config['albef_4m']['cfg_path'] = './configs/Retrieval_flickr.yaml'
config['albef_4m']['ckpt_path'] = ''

0
models/__init__.py

BIN
models/__pycache__/__init__.cpython-38.pyc

Binary file not shown.

BIN
models/__pycache__/model_retrieval.cpython-38.pyc

Binary file not shown.

BIN
models/__pycache__/tokenization_bert.cpython-38.pyc

Binary file not shown.

BIN
models/__pycache__/vit.cpython-38.pyc

Binary file not shown.

BIN
models/__pycache__/xbert.cpython-38.pyc

Binary file not shown.

128
models/model_nlvr.py

@ -0,0 +1,128 @@
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel
import torch
from torch import nn
import torch.nn.functional as F
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
):
super().__init__()
self.tokenizer = tokenizer
self.distill = config['distill']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
bert_config = BertConfig.from_json_file(config['bert_config'])
bert_config.num_hidden_layers = 18
self.text_encoder = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.cls_head = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
nn.ReLU(),
nn.Linear(self.text_encoder.config.hidden_size, 2)
)
self.share_cross_attention(self.text_encoder.encoder)
if self.distill:
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.text_encoder_m = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.share_cross_attention(self.text_encoder_m.encoder)
self.cls_head_m = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
nn.ReLU(),
nn.Linear(self.text_encoder.config.hidden_size, 2)
)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.text_encoder,self.text_encoder_m],
[self.cls_head,self.cls_head_m],
]
self.copy_params()
self.momentum = 0.995
def forward(self, image, text, targets, alpha=0, train=True):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
output = self.text_encoder(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = [image0_embeds,image1_embeds],
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
image_atts[image0_embeds.size(0):]],
return_dict = True,
)
hidden_state = output.last_hidden_state[:,0,:]
prediction = self.cls_head(hidden_state)
if train:
if self.distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image0_embeds_m, image1_embeds_m = torch.split(image_embeds_m,targets.size(0))
output_m = self.text_encoder_m(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = [image0_embeds_m,image1_embeds_m],
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
image_atts[image0_embeds.size(0):]],
return_dict = True,
)
prediction_m = self.cls_head_m(output_m.last_hidden_state[:,0,:])
loss = (1-alpha)*F.cross_entropy(prediction, targets) - alpha*torch.sum(
F.log_softmax(prediction, dim=1)*F.softmax(prediction_m, dim=1),dim=1).mean()
else:
loss = F.cross_entropy(prediction, targets)
return loss
else:
return prediction
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
def share_cross_attention(self, model):
for i in range(6):
layer_num = 6+i*2
modules_0 = model.layer[layer_num].crossattention.self._modules
modules_1 = model.layer[layer_num+1].crossattention.self._modules
for name in modules_0.keys():
if 'key' in name or 'value' in name:
module_0 = modules_0[name]
module_1 = modules_1[name]
if hasattr(module_0, "weight"):
module_0.weight = module_1.weight
if hasattr(module_0, "bias"):
module_0.bias = module_1.bias

291
models/model_pretrain.py

@ -0,0 +1,291 @@
'''
* Copyright (c) 2021, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
from functools import partial
from models.vit import VisionTransformer, interpolate_pos_embed
from models.xbert import BertConfig, BertForMaskedLM
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import random
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
temp = 0.07,
init_deit = True
):
super().__init__()
self.tokenizer = tokenizer
self.mlm_probability = config['mlm_probability']
embed_dim = config['embed_dim']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
if init_deit:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu", check_hash=True)
state_dict = checkpoint["model"]
pos_embed_reshaped = interpolate_pos_embed(state_dict['pos_embed'], self.visual_encoder)
state_dict['pos_embed'] = pos_embed_reshaped
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
print(msg)
vision_width = config['vision_width']
bert_config = BertConfig.from_json_file(config['bert_config'])
self.text_encoder = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.temp = nn.Parameter(torch.ones([]) * config['temp'])
self.queue_size = config['queue_size']
self.momentum = config['momentum']
self.itm_head = nn.Linear(text_width, 2)
# create momentum models
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
self.text_encoder_m = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)
self.text_proj_m = nn.Linear(text_width, embed_dim)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.vision_proj,self.vision_proj_m],
[self.text_encoder,self.text_encoder_m],
[self.text_proj,self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
def forward(self, image, text, alpha=0):
with torch.no_grad():
self.temp.clamp_(0.001,0.5)
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
text_output = self.text_encoder.bert(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:,0,:]),dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
text_output_m = self.text_encoder_m.bert(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
loss_ita = (loss_i2t+loss_t2i)/2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
###=================================###
# forward the positve image-text pair
output_pos = self.text_encoder.bert(encoder_embeds = text_embeds,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
mode = 'fusion',
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)
weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)
weights_i2t.fill_diagonal_(0)
weights_t2i.fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg,dim=0)
text_atts_neg = torch.stack(text_atts_neg,dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg],dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
output_neg = self.text_encoder.bert(encoder_embeds = text_embeds_all,
attention_mask = text_atts_all,
encoder_hidden_states = image_embeds_all,
encoder_attention_mask = image_atts_all,
return_dict = True,
mode = 'fusion',
)
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
vl_output = self.itm_head(vl_embeddings)
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
dim=0).to(image.device)
loss_itm = F.cross_entropy(vl_output, itm_labels)
##================= MLM ========================##
input_ids = text.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, self.mlm_probability)
input_ids, labels = self.mask(input_ids, self.text_encoder.config.vocab_size, image.device, targets=labels,
probability_matrix = probability_matrix)
with torch.no_grad():
logits_m = self.text_encoder_m(input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds_m,
encoder_attention_mask = image_atts,
return_dict = True,
return_logits = True,
)
mlm_output = self.text_encoder(input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
labels = labels,
soft_labels = F.softmax(logits_m,dim=-1),
alpha = alpha
)
loss_mlm = mlm_output.loss
return loss_mlm, loss_ita, loss_itm
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, image_feat, text_feat):
# gather keys before updating queue
image_feats = concat_all_gather(image_feat)
text_feats = concat_all_gather(text_feat)
batch_size = image_feats.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_size % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
ptr = (ptr + batch_size) % self.queue_size # move pointer
self.queue_ptr[0] = ptr
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
if targets is not None:
targets[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output

99
models/model_pretrain_nlvr.py

@ -0,0 +1,99 @@
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel
import torch
from torch import nn
import torch.nn.functional as F
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
):
super().__init__()
self.tokenizer = tokenizer
vision_width = config['vision_width']
embed_dim = config['embed_dim']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
bert_config = BertConfig.from_json_file(config['bert_config'])
bert_config.num_hidden_layers = 18
self.text_encoder = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
#share the cross-attention layers for two images
self.share_cross_attention(self.text_encoder.encoder)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.temp = nn.Parameter(torch.ones([]) * 0.07)
self.ta_head = nn.Linear(self.text_encoder.config.hidden_size, 3)
def forward(self, image, text):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
with torch.no_grad():
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
sim = image_feat @ image_feat.t() / 0.07
weights = F.softmax(sim,dim=1)
weights.fill_diagonal_(0)
image_inputs = [[],[]]
labels = []
for b in range(image.size(0)):
if torch.rand(1)>1/3:
idx = torch.multinomial(weights[b], 1).item()
if torch.rand(1)>0.5:
image_inputs[0].append(image_embeds[b])
image_inputs[1].append(image_embeds[idx])
labels.append(0)
else:
image_inputs[1].append(image_embeds[b])
image_inputs[0].append(image_embeds[idx])
labels.append(1)
else:
idx = torch.multinomial(weights[b], 2)
image_inputs[0].append(image_embeds[idx[0]])
image_inputs[1].append(image_embeds[idx[1]])
labels.append(2)
image_inputs[0] = torch.stack(image_inputs[0],dim=0)
image_inputs[1] = torch.stack(image_inputs[1],dim=0)
labels = torch.LongTensor(labels).to(image.device)
output = self.text_encoder(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_inputs,
encoder_attention_mask = [image_atts,image_atts],
return_dict = True,
)
pred = self.ta_head(output.last_hidden_state[:,0,:])
loss = F.cross_entropy(pred, labels)
return loss
def share_cross_attention(self, model):
for i in range(6):
layer_num = 6+i*2
modules_0 = model.layer[layer_num].crossattention.self._modules
modules_1 = model.layer[layer_num+1].crossattention.self._modules
for name in modules_0.keys():
if 'key' in name or 'value' in name:
module_0 = modules_0[name]
module_1 = modules_1[name]
if hasattr(module_0, "weight"):
module_0.weight = module_1.weight
if hasattr(module_0, "bias"):
module_0.bias = module_1.bias

217
models/model_retrieval.py

@ -0,0 +1,217 @@
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel
import torch
from torch import nn
import torch.nn.functional as F
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
):
super().__init__()
self.tokenizer = tokenizer
self.distill = config['distill']
embed_dim = config['embed_dim']
vision_width = config['vision_width']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
bert_config = BertConfig.from_json_file(config['bert_config'])
self.text_encoder = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.temp = nn.Parameter(torch.ones([]) * config['temp'])
self.queue_size = config['queue_size']
self.momentum = config['momentum']
self.itm_head = nn.Linear(text_width, 2)
# create momentum models
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
self.text_encoder_m = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.text_proj_m = nn.Linear(text_width, embed_dim)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.vision_proj,self.vision_proj_m],
[self.text_encoder,self.text_encoder_m],
[self.text_proj,self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("idx_queue", torch.full((1,self.queue_size),-100))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
def forward(self, image, text, alpha, idx):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:,0,:]),dim=-1)
idx = idx.view(-1,1)
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
pos_idx = torch.eq(idx, idx_all).float()
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
if self.distill:
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
if self.distill:
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
else:
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_targets,dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_targets,dim=1).mean()
loss_ita = (loss_i2t+loss_t2i)/2
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idx)
###=================================###
# forward the positve image-text pair
output_pos = self.text_encoder(encoder_embeds = text_embeds,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
mode = 'fusion',
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = F.softmax(sim_i2t[:,:bs]+1e-4,dim=1)
weights_t2i = F.softmax(sim_t2i[:,:bs]+1e-4,dim=1)
mask = torch.eq(idx, idx.T)
weights_i2t.masked_fill_(mask, 0)
weights_t2i.masked_fill_(mask, 0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg,dim=0)
text_atts_neg = torch.stack(text_atts_neg,dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg],dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
output_neg = self.text_encoder(encoder_embeds = text_embeds_all,
attention_mask = text_atts_all,
encoder_hidden_states = image_embeds_all,
encoder_attention_mask = image_atts_all,
return_dict = True,
mode = 'fusion',
)
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
vl_output = self.itm_head(vl_embeddings)
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
dim=0).to(image.device)
loss_itm = F.cross_entropy(vl_output, itm_labels)
return loss_ita, loss_itm
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, image_feat, text_feat, idx):
# gather keys before updating queue
image_feats = concat_all_gather(image_feat)
text_feats = concat_all_gather(text_feat)
idxs = concat_all_gather(idx)
batch_size = image_feats.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_size % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
ptr = (ptr + batch_size) % self.queue_size # move pointer
self.queue_ptr[0] = ptr
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output

110
models/model_ve.py

@ -0,0 +1,110 @@
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel
import torch
from torch import nn
import torch.nn.functional as F
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
):
super().__init__()
self.tokenizer = tokenizer
self.distill = config['distill']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
bert_config = BertConfig.from_json_file(config['bert_config'])
self.text_encoder = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.cls_head = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
nn.ReLU(),
nn.Linear(self.text_encoder.config.hidden_size, 3)
)
if self.distill:
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.text_encoder_m = BertModel.from_pretrained(text_encoder, config=bert_config, add_pooling_layer=False)
self.cls_head_m = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
nn.ReLU(),
nn.Linear(self.text_encoder.config.hidden_size, 3)
)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.text_encoder,self.text_encoder_m],
[self.cls_head,self.cls_head_m],
]
self.copy_params()
self.momentum = 0.995
def forward(self, image, text, targets, alpha=0, train=True):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
if train:
output = self.text_encoder(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True
)
prediction = self.cls_head(output.last_hidden_state[:,0,:])
if self.distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
output_m = self.text_encoder_m(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds_m,
encoder_attention_mask = image_atts,
return_dict = True
)
prediction_m = self.cls_head_m(output_m.last_hidden_state[:,0,:])
loss = (1-alpha)*F.cross_entropy(prediction, targets) - alpha*torch.sum(
F.log_softmax(prediction, dim=1)*F.softmax(prediction_m, dim=1),dim=1).mean()
else:
loss = F.cross_entropy(prediction, targets)
return loss
else:
output = self.text_encoder(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True
)
prediction = self.cls_head(output.last_hidden_state[:,0,:])
return prediction
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)

214
models/model_vqa.py

@ -0,0 +1,214 @@
from functools import partial
from models.vit import VisionTransformer
from models.xbert import BertConfig, BertModel, BertLMHeadModel
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
text_decoder = None,
tokenizer = None,
config = None,
):
super().__init__()
self.tokenizer = tokenizer
self.distill = config['distill']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
config_encoder = BertConfig.from_json_file(config['bert_config'])
self.text_encoder = BertModel.from_pretrained(text_encoder, config=config_encoder, add_pooling_layer=False)
config_decoder = BertConfig.from_json_file(config['bert_config'])
config_decoder.fusion_layer = 0
config_decoder.num_hidden_layers = 6
self.text_decoder = BertLMHeadModel.from_pretrained(text_decoder, config=config_decoder)
if self.distill:
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.text_encoder_m = BertModel.from_pretrained(text_encoder, config=config_encoder, add_pooling_layer=False)
self.text_decoder_m = BertLMHeadModel.from_pretrained(text_decoder, config=config_decoder)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.text_encoder,self.text_encoder_m],
[self.text_decoder,self.text_decoder_m],
]
self.copy_params()
self.momentum = 0.995
def forward(self, image, quesiton, answer=None, alpha=0, k=None, weights=None, train=True):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
if train:
'''
k: number of answers for each question
weights: weight for each answer
'''
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
question_output = self.text_encoder(quesiton.input_ids,
attention_mask = quesiton.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True)
question_states = []
question_atts = []
for b, n in enumerate(k):
question_states += [question_output.last_hidden_state[b]]*n
question_atts += [quesiton.attention_mask[b]]*n
question_states = torch.stack(question_states,0)
question_atts = torch.stack(question_atts,0)
if self.distill:
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
question_output_m = self.text_encoder_m(quesiton.input_ids,
attention_mask = quesiton.attention_mask,
encoder_hidden_states = image_embeds_m,
encoder_attention_mask = image_atts,
return_dict = True)
question_states_m = []
for b, n in enumerate(k):
question_states_m += [question_output_m.last_hidden_state[b]]*n
question_states_m = torch.stack(question_states_m,0)
logits_m = self.text_decoder_m(answer.input_ids,
attention_mask = answer.attention_mask,
encoder_hidden_states = question_states_m,
encoder_attention_mask = question_atts,
return_logits = True,
)
answer_output = self.text_decoder(answer.input_ids,
attention_mask = answer.attention_mask,
encoder_hidden_states = question_states,
encoder_attention_mask = question_atts,
labels = answer_targets,
return_dict = True,
soft_labels = F.softmax(logits_m,dim=-1),
alpha = alpha,
reduction = 'none',
)
else:
answer_output = self.text_decoder(answer.input_ids,
attention_mask = answer.attention_mask,
encoder_hidden_states = question_states,
encoder_attention_mask = question_atts,
labels = answer_targets,
return_dict = True,
reduction = 'none',
)
loss = weights * answer_output.loss
loss = loss.sum()/image.size(0)
return loss
else:
question_output = self.text_encoder(quesiton.input_ids,
attention_mask = quesiton.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True)
topk_ids, topk_probs = self.rank_answer(question_output.last_hidden_state, quesiton.attention_mask,
answer.input_ids, answer.attention_mask, k)
return topk_ids, topk_probs
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
num_ques = question_states.size(0)
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
start_output = self.text_decoder(start_ids,
encoder_hidden_states = question_states,
encoder_attention_mask = question_atts,
return_dict = True,
reduction = 'none')
logits = start_output.logits[:,0,:] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:,1]
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids,dim=0)
input_atts = torch.cat(input_atts,dim=0)
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, k)
question_atts = tile(question_atts, 0, k)
output = self.text_decoder(input_ids,
attention_mask = input_atts,
encoder_hidden_states = question_states,
encoder_attention_mask = question_atts,
labels = targets_ids,
return_dict = True,
reduction = 'none')
answer_loss = output.loss
answer_loss = answer_loss.view(input_ids.size(0),-1)
# topk_prob: first token probability
topk_probs = topk_probs.view(-1,1)
log_probs = torch.cat([topk_probs.log(), -answer_loss],dim=1)
# re-calculate log probabilities for the answer sequences using chain rule
log_probs_sum = log_probs.sum(1)
log_probs_sum = log_probs_sum.view(num_ques,k)
topk_probs = F.softmax(log_probs_sum, dim=-1)
# get top-k after re-ranking
topk_probs, rerank_id = topk_probs.topk(k,dim=1)
topk_ids = torch.gather(topk_ids, 1, rerank_id)
return topk_ids, topk_probs
def tile(x, dim, n_tile):
init_dim = x.size(dim)
repeat_idx = [1] * x.dim()
repeat_idx[dim] = n_tile
x = x.repeat(*(repeat_idx))
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
return torch.index_select(x, dim, order_index.to(x.device))

539
models/tokenization_bert.py

@ -0,0 +1,539 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Bert."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"bert-base-uncased": 512,
"bert-large-uncased": 512,
"bert-base-cased": 512,
"bert-large-cased": 512,
"bert-base-multilingual-uncased": 512,
"bert-base-multilingual-cased": 512,
"bert-base-chinese": 512,
"bert-base-german-cased": 512,
"bert-large-uncased-whole-word-masking": 512,
"bert-large-cased-whole-word-masking": 512,
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
"bert-base-cased-finetuned-mrpc": 512,
"bert-base-german-dbmdz-cased": 512,
"bert-base-german-dbmdz-uncased": 512,
"TurkuNLP/bert-base-finnish-cased-v1": 512,
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
"wietsedv/bert-base-dutch-cased": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"bert-base-uncased": {"do_lower_case": True},
"bert-large-uncased": {"do_lower_case": True},
"bert-base-cased": {"do_lower_case": False},
"bert-large-cased": {"do_lower_case": False},
"bert-base-multilingual-uncased": {"do_lower_case": True},
"bert-base-multilingual-cased": {"do_lower_case": False},
"bert-base-chinese": {"do_lower_case": False},
"bert-base-german-cased": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer. Based on WordPiece.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
File containing the vocabulary.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to do basic tokenization before WordPiece.
never_split (:obj:`Iterable`, `optional`):
Collection of tokens which will never be split during tokenization. Only has an effect when
:obj:`do_basic_tokenize=True`
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this `issue
<https://github.com/huggingface/transformers/issues/328>`__).
strip_accents: (:obj:`bool`, `optional`):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for :obj:`lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs
):
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
""" Converts a sequence of tokens (string) in a single string. """
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: ``[CLS] X ``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0))
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(vocab_file)
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to lowercase the input when tokenizing.
never_split (:obj:`Iterable`, `optional`):
Collection of tokens which will never be split during tokenization. Only has an effect when
:obj:`do_basic_tokenize=True`
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this `issue
<https://github.com/huggingface/transformers/issues/328>`__).
strip_accents: (:obj:`bool`, `optional`):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for :obj:`lowercase` (as in the original BERT).
"""
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
WordPieceTokenizer.
Args:
**never_split**: (`optional`) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
:func:`PreTrainedTokenizer.tokenize`) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if never_split is not None and text in never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens

202
models/vit.py

@ -0,0 +1,202 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_gradients = None
self.attention_map = None
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def forward(self, x, register_hook=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if register_hook:
self.save_attention_map(attn)
attn.register_hook(self.save_attn_gradients)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, register_hook=False):
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def forward(self, x, register_blk=-1):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed[:,:x.size(1),:]
x = self.pos_drop(x)
for i,blk in enumerate(self.blocks):
x = blk(x, register_blk==i)
x = self.norm(x)
return x
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
# interpolate position embedding
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = visual_encoder.patch_embed.num_patches
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
if orig_size!=new_size:
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
return new_pos_embed
else:
return pos_embed_checkpoint

1916
models/xbert.py

File diff suppressed because it is too large

0
requirements.txt

Loading…
Cancel
Save