copied
Readme
Files and versions
2.9 KiB
Image-Text Retrieval Embdding with ALBEF
author: David Wang
Description
This operator extracts features for image or text with ALBEF which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This research introduced a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. This repo is an adaptation from salesforce / ALBEF
Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
Write the pipeline in simplified style:
import towhee
towhee.glob('./teddy.jpg') \
.image_decode() \
.image_text_embedding.albef(model_name='albef_4m', modality='image') \
.show()
towhee.dc(["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.albef(model_name='albef_4m', modality='text') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./teddy.jpg') \
.image_decode['path', 'img']() \
.image_text_embedding.albef['img', 'vec'](model_name='albef_4m', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.albef['text','vec'](model_name='albef_4m', modality='text') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
albef(model_name, modality)
Parameters:
model_name: str
The model name of ALBEF. Supported model names:
- albef_4m
- albef_14m
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
2.9 KiB
Image-Text Retrieval Embdding with ALBEF
author: David Wang
Description
This operator extracts features for image or text with ALBEF which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This research introduced a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. This repo is an adaptation from salesforce / ALBEF
Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
Write the pipeline in simplified style:
import towhee
towhee.glob('./teddy.jpg') \
.image_decode() \
.image_text_embedding.albef(model_name='albef_4m', modality='image') \
.show()
towhee.dc(["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.albef(model_name='albef_4m', modality='text') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./teddy.jpg') \
.image_decode['path', 'img']() \
.image_text_embedding.albef['img', 'vec'](model_name='albef_4m', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.albef['text','vec'](model_name='albef_4m', modality='text') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
albef(model_name, modality)
Parameters:
model_name: str
The model name of ALBEF. Supported model names:
- albef_4m
- albef_14m
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.