logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

291 lines
14 KiB

'''
* Copyright (c) 2021, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
from functools import partial
from models.vit import VisionTransformer, interpolate_pos_embed
from models.xbert import BertConfig, BertForMaskedLM
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import random
class ALBEF(nn.Module):
def __init__(self,
text_encoder = None,
tokenizer = None,
config = None,
temp = 0.07,
init_deit = True
):
super().__init__()
self.tokenizer = tokenizer
self.mlm_probability = config['mlm_probability']
embed_dim = config['embed_dim']
self.visual_encoder = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
if init_deit:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu", check_hash=True)
state_dict = checkpoint["model"]
pos_embed_reshaped = interpolate_pos_embed(state_dict['pos_embed'], self.visual_encoder)
state_dict['pos_embed'] = pos_embed_reshaped
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
print(msg)
vision_width = config['vision_width']
bert_config = BertConfig.from_json_file(config['bert_config'])
self.text_encoder = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.temp = nn.Parameter(torch.ones([]) * config['temp'])
self.queue_size = config['queue_size']
self.momentum = config['momentum']
self.itm_head = nn.Linear(text_width, 2)
# create momentum models
self.visual_encoder_m = VisionTransformer(
img_size=config['image_res'], patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
self.text_encoder_m = BertForMaskedLM.from_pretrained(text_encoder, config=bert_config)
self.text_proj_m = nn.Linear(text_width, embed_dim)
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
[self.vision_proj,self.vision_proj_m],
[self.text_encoder,self.text_encoder_m],
[self.text_proj,self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, self.queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
def forward(self, image, text, alpha=0):
with torch.no_grad():
self.temp.clamp_(0.001,0.5)
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
text_output = self.text_encoder.bert(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:,0,:]),dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
text_output_m = self.text_encoder_m.bert(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
loss_ita = (loss_i2t+loss_t2i)/2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
###=================================###
# forward the positve image-text pair
output_pos = self.text_encoder.bert(encoder_embeds = text_embeds,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
mode = 'fusion',
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)
weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)
weights_i2t.fill_diagonal_(0)
weights_t2i.fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg,dim=0)
text_atts_neg = torch.stack(text_atts_neg,dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg],dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
output_neg = self.text_encoder.bert(encoder_embeds = text_embeds_all,
attention_mask = text_atts_all,
encoder_hidden_states = image_embeds_all,
encoder_attention_mask = image_atts_all,
return_dict = True,
mode = 'fusion',
)
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
vl_output = self.itm_head(vl_embeddings)
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
dim=0).to(image.device)
loss_itm = F.cross_entropy(vl_output, itm_labels)
##================= MLM ========================##
input_ids = text.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, self.mlm_probability)
input_ids, labels = self.mask(input_ids, self.text_encoder.config.vocab_size, image.device, targets=labels,
probability_matrix = probability_matrix)
with torch.no_grad():
logits_m = self.text_encoder_m(input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds_m,
encoder_attention_mask = image_atts,
return_dict = True,
return_logits = True,
)
mlm_output = self.text_encoder(input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
labels = labels,
soft_labels = F.softmax(logits_m,dim=-1),
alpha = alpha
)
loss_mlm = mlm_output.loss
return loss_mlm, loss_ita, loss_itm
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, image_feat, text_feat):
# gather keys before updating queue
image_feats = concat_all_gather(image_feat)
text_feats = concat_all_gather(text_feat)
batch_size = image_feats.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_size % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
ptr = (ptr + batch_size) % self.queue_size # move pointer
self.queue_ptr[0] = ptr
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
if targets is not None:
targets[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output