diff --git a/README.md b/README.md index 33f8a32..d912ec5 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,107 @@ -# BLIP +# Image-Text Retrieval Embdding with BLIP + +*author: David Wang* + + +
+ + + +## Description + +This operator extracts features for image or text with [BLIP](https://arxiv.org/abs/2201.12086) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP). + + +
+ + +## Code Example + +Load an image from path './teddy.jpg' to generate an image embedding. + +Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. + + *Write the pipeline in simplified style*: + +```python +import towhee + +towhee.glob('./teddy.jpg') \ + .image_decode() \ + .image_text_embedding.blip(model_name='blip_base', modality='image') \ + .show() + +towhee.dc(["A teddybear on a skateboard in Times Square."]) \ + .image_text_embedding.blip(model_name='blip_base', modality='text') \ + .show() +``` +result1 +result2 + +*Write a same pipeline with explicit inputs/outputs name specifications:* + +```python +import towhee + +towhee.glob['path']('./teddy.jpg') \ + .image_decode['path', 'img']() \ + .image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \ + .select['img', 'vec']() \ + .show() + +towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \ + .image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \ + .select['text', 'vec']() \ + .show() +``` +result1 +result2 + + +
+ + + +## Factory Constructor + +Create the operator via the following factory method + +***clip(model_name, modality)*** + +**Parameters:** + +​ ***model_name:*** *str* + +​ The model name of BLIP. Supported model names: +- blip_base + + +​ ***modality:*** *str* + +​ Which modality(*image* or *text*) is used to generate the embedding. + +
+ + + +## Interface + +An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. + + +**Parameters:** + +​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* + +​ The data (image or text based on specified modality) to generate embedding. + + + +**Returns:** *numpy.ndarray* + +​ The data embedding extracted by model. + + + + diff --git a/blip.py b/blip.py index ec5c904..ae4847d 100644 --- a/blip.py +++ b/blip.py @@ -33,7 +33,7 @@ class Blip(NNOperator): sys.path.append(str(Path(__file__).parent)) from models.blip import blip_feature_extractor image_size = 224 - model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth' + model_url = self._configs()[model_name]['weights'] self.model = blip_feature_extractor(pretrained=model_url, image_size=image_size, vit='base') self._modality = modality @@ -73,4 +73,10 @@ class Blip(NNOperator): img = to_pil(img) processed_img = self.tfms(img).unsqueeze(0).to(self.device) return processed_img + + def _configs(): + config = {} + config['blip_base'] = {} + config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth' + return config