diff --git a/README.md b/README.md
index 33f8a32..d912ec5 100644
--- a/README.md
+++ b/README.md
@@ -1,2 +1,107 @@
-# BLIP
+# Image-Text Retrieval Embdding with BLIP
+
+*author: David Wang*
+
+
+
+
+
+
+## Description
+
+This operator extracts features for image or text with [BLIP](https://arxiv.org/abs/2201.12086) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP).
+
+
+
+
+
+## Code Example
+
+Load an image from path './teddy.jpg' to generate an image embedding.
+
+Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
+
+ *Write the pipeline in simplified style*:
+
+```python
+import towhee
+
+towhee.glob('./teddy.jpg') \
+ .image_decode() \
+ .image_text_embedding.blip(model_name='blip_base', modality='image') \
+ .show()
+
+towhee.dc(["A teddybear on a skateboard in Times Square."]) \
+ .image_text_embedding.blip(model_name='blip_base', modality='text') \
+ .show()
+```
+
+
+
+*Write a same pipeline with explicit inputs/outputs name specifications:*
+
+```python
+import towhee
+
+towhee.glob['path']('./teddy.jpg') \
+ .image_decode['path', 'img']() \
+ .image_text_embedding.blip['img', 'vec'](model_name='blip_base', modality='image') \
+ .select['img', 'vec']() \
+ .show()
+
+towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
+ .image_text_embedding.blip['text','vec'](model_name='blip_base', modality='text') \
+ .select['text', 'vec']() \
+ .show()
+```
+
+
+
+
+
+
+
+
+## Factory Constructor
+
+Create the operator via the following factory method
+
+***clip(model_name, modality)***
+
+**Parameters:**
+
+ ***model_name:*** *str*
+
+ The model name of BLIP. Supported model names:
+- blip_base
+
+
+ ***modality:*** *str*
+
+ Which modality(*image* or *text*) is used to generate the embedding.
+
+
+
+
+
+## Interface
+
+An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
+
+
+**Parameters:**
+
+ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
+
+ The data (image or text based on specified modality) to generate embedding.
+
+
+
+**Returns:** *numpy.ndarray*
+
+ The data embedding extracted by model.
+
+
+
+
diff --git a/blip.py b/blip.py
index ec5c904..ae4847d 100644
--- a/blip.py
+++ b/blip.py
@@ -33,7 +33,7 @@ class Blip(NNOperator):
sys.path.append(str(Path(__file__).parent))
from models.blip import blip_feature_extractor
image_size = 224
- model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth'
+ model_url = self._configs()[model_name]['weights']
self.model = blip_feature_extractor(pretrained=model_url, image_size=image_size, vit='base')
self._modality = modality
@@ -73,4 +73,10 @@ class Blip(NNOperator):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img
+
+ def _configs():
+ config = {}
+ config['blip_base'] = {}
+ config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth'
+ return config